Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.119
Filtrer
1.
Methods Mol Biol ; 2831: 39-57, 2024.
Article de Anglais | MEDLINE | ID: mdl-39134842

RÉSUMÉ

Dendritic arborization is a critical determinant of neuronal connectivity. The structure of a neuron's dendritic arbor determines the number of synaptic inputs a neuron can receive and how it processes synaptic input from other neurons. Here, we describe methods for visualizing and quantifying the dendritic arbor in primary cell cultures and in the intact rodent brain. These techniques can be used to answer significant scientific questions, such as the effects of disease processes, drugs, growth factors, and diverse environmental stressors on dendritogenesis in both in vitro and in vivo rodent models.


Sujet(s)
Dendrites , Animaux , Dendrites/métabolisme , Souris , Rats , Cellules cultivées , Neurones/métabolisme , Neurones/cytologie , Rodentia , Encéphale/cytologie , Encéphale/métabolisme
2.
Methods Mol Biol ; 2831: 81-95, 2024.
Article de Anglais | MEDLINE | ID: mdl-39134845

RÉSUMÉ

During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.


Sujet(s)
Neurones , Animaux , Souris , Neurones/cytologie , Neurones/métabolisme , Électroporation/méthodes , Microscopie de fluorescence multiphotonique/méthodes , Épines dendritiques/métabolisme , Épines dendritiques/ultrastructure , Cellules pyramidales/métabolisme , Cellules pyramidales/cytologie , Femelle , Cortex cérébral/cytologie , Dendrites/métabolisme
3.
Methods Mol Biol ; 2831: 113-132, 2024.
Article de Anglais | MEDLINE | ID: mdl-39134847

RÉSUMÉ

Neuronal development is characterized by the unidirectional flow of signal from the axon to the dendrites via synapses. Neuronal polarization is a critical step during development that allows the specification of the different neuronal processes as a single axon and multiple dendrites both structurally and functionally, allowing the unidirectional flow of information. Along with extrinsic and intrinsic signaling, a whole network of molecular complexes involved in positive and negative feedback loops play a major role in this critical distinction of neuronal processes. As a result, neuronal morphology is drastically altered during establishment of polarity. In this chapter, we discuss how we can analyze the morphological alterations of neurons in vitro in culture to assess the development and polarity status of the neuron. We also discuss how these studies can be conducted in vivo, where polarity studies pose a greater challenge with promising results for addressing multiple pathological conditions. Our experimental model is limited to rodent hippocampal/cortical neurons in culture and cortical neurons in brain tissues, which are well-characterized model systems for understanding neuronal polarization.


Sujet(s)
Polarité de la cellule , Hippocampe , Neurones , Animaux , Neurones/cytologie , Neurones/physiologie , Neurones/métabolisme , Souris , Hippocampe/cytologie , Cellules cultivées , Rats , Axones/physiologie , Axones/métabolisme , Dendrites/physiologie , Dendrites/métabolisme , Cortex cérébral/cytologie
4.
Methods Mol Biol ; 2831: 283-299, 2024.
Article de Anglais | MEDLINE | ID: mdl-39134857

RÉSUMÉ

Mosaic Analysis with Double Markers (MADM) is a powerful genetic method typically used for lineage tracing and to disentangle cell autonomous and tissue-wide roles of candidate genes with single cell resolution. Given the relatively sparse labeling, depending on which of the 19 MADM chromosomes one chooses, the MADM approach represents the perfect opportunity for cell morphology analysis. Various MADM studies include reports of morphological anomalies and phenotypes in the central nervous system (CNS). MADM for any candidate gene can easily incorporate morphological analysis within the experimental workflow. Here, we describe the methods of morphological cell analysis which we developed in the course of diverse recent MADM studies. This chapter will specifically focus on methods to quantify aspects of the morphology of neurons and astrocytes within the CNS, but these methods can broadly be applied to any MADM-labeled cells throughout the entire organism. We will cover two analyses-soma volume and dendrite characterization-of physical characteristics of pyramidal neurons in the somatosensory cortex, and two analyses-volume and Sholl analysis-of astrocyte morphology.


Sujet(s)
Astrocytes , Névroglie , Neurones , Animaux , Neurones/cytologie , Neurones/métabolisme , Astrocytes/cytologie , Astrocytes/métabolisme , Névroglie/cytologie , Névroglie/métabolisme , Souris , Mosaïcisme , Marqueurs biologiques , Dendrites/métabolisme , Cortex somatosensoriel/cytologie
5.
Elife ; 132024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39146380

RÉSUMÉ

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.


Sujet(s)
Actines , Dendrites , Hippocampe , Plasticité neuronale , Polymérisation , Récepteur de l'AMPA , Animaux , Récepteur de l'AMPA/métabolisme , Actines/métabolisme , Rats , Plasticité neuronale/physiologie , Dendrites/métabolisme , Hippocampe/métabolisme , Hippocampe/cytologie , Transport des protéines , Neurones/métabolisme , Cellules cultivées , Exocytose
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39125895

RÉSUMÉ

The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.


Sujet(s)
Dendrites , Hippocampe , Protéines à domaine LIM , Domaines PDZ , Dendrites/métabolisme , Animaux , Hippocampe/métabolisme , Hippocampe/cytologie , Protéines à domaine LIM/métabolisme , Protéines à domaine LIM/composition chimique , Protéines à domaine LIM/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/composition chimique , Protéines adaptatrices de la transduction du signal/génétique , Domaines protéiques , Neurones/métabolisme , Rats , Cellules cultivées , Humains
7.
Sci Adv ; 10(32): eadl5722, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39110798

RÉSUMÉ

Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.


Sujet(s)
Glaucome , Insuline , Cellules ganglionnaires rétiniennes , Cellules ganglionnaires rétiniennes/métabolisme , Cellules ganglionnaires rétiniennes/effets des médicaments et des substances chimiques , Glaucome/traitement médicamenteux , Glaucome/métabolisme , Glaucome/anatomopathologie , Insuline/métabolisme , Insuline/pharmacologie , Animaux , Humains , Souris , Modèles animaux de maladie humaine , Dendrites/métabolisme , Dendrites/effets des médicaments et des substances chimiques , Synapses/métabolisme , Synapses/effets des médicaments et des substances chimiques , Calcium/métabolisme
8.
Open Biol ; 14(7): 240059, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39046196

RÉSUMÉ

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.


Sujet(s)
Dendrites , Cellules réceptrices sensorielles , Animaux , Dendrites/métabolisme , Cellules réceptrices sensorielles/métabolisme , Cellules réceptrices sensorielles/cytologie , Plasticité neuronale , Synapses/métabolisme , Drosophila , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster
9.
Mol Biol Cell ; 35(9): ar115, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38985513

RÉSUMÉ

The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in Caenorhabditis elegans. Loss of KLP-7 caused a mislocalization of axonal proteins, including RAB-3, SAD-1, and their motor UNC-104, to dendrites. This is rescued by cell-autonomous expression of the KLP-7 or colchicine treatment, indicating the involvement of KLP-7-dependent microtubule depolymerization. The high mobility of KLP-7 is correlated to increased microtubule dynamics in the dendrites, which restricts the enrichment of UNC-44, an integral component of Axon Initial Segment (AIS) in these processes. Due to the loss of KLP-7, ectopic enrichment of UNC-44 in the dendrite potentially redirects axonal traffic into dendrites that include plus-end out microtubules, axonal motors, and cargoes. These observations indicate that KLP-7-mediated depolymerization defines the microtubule dynamics conducive to the specific enrichment of AIS components in dendrites. This further compartmentalizes dendritic and axonal microtubules, motors, and cargoes, thereby influencing neuronal polarity.


Sujet(s)
Axones , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Polarité de la cellule , Dendrites , Kinésine , Microtubules , Animaux , Caenorhabditis elegans/métabolisme , Dendrites/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Kinésine/métabolisme , Microtubules/métabolisme , Axones/métabolisme , Polarité de la cellule/physiologie , Neurones/métabolisme , Transport des protéines , Protéines de tissu nerveux/métabolisme
10.
Mol Biol Cell ; 35(8): ar109, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38985523

RÉSUMÉ

The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.


Sujet(s)
Axones , Dendrites , Protéines de Drosophila , Drosophila melanogaster , Facteurs d'échange de nucléotides guanyliques , Protéines de liaison à l'ARN , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Axones/métabolisme , Dendrites/métabolisme , Drosophila melanogaster/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Facteurs d'échange de nucléotides guanyliques/génétique , Methyltransferases/métabolisme , Methyltransferases/génétique , Épissage des ARN , ARN messager/métabolisme , ARN messager/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique
11.
Nat Commun ; 15(1): 6295, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39060234

RÉSUMÉ

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.


Sujet(s)
Région CA1 de l'hippocampe , Dendrites , Cellules pyramidales , Animaux , Dendrites/physiologie , Dendrites/métabolisme , Cellules pyramidales/physiologie , Cellules pyramidales/métabolisme , Souris , Région CA1 de l'hippocampe/physiologie , Région CA1 de l'hippocampe/cytologie , Potentiels de membrane/physiologie , Mâle , Souris de lignée C57BL , Hippocampe/physiologie , Hippocampe/cytologie , Navigation spatiale/physiologie , Locomotion/physiologie
12.
Nat Commun ; 15(1): 6337, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39068160

RÉSUMÉ

Neuronal anatomy is central to the organization and function of brain cell types. However, anatomical variability within apparently homogeneous populations of cells can obscure such insights. Here, we report large-scale automation of neuronal morphology reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using the Patch-seq method, which enables measurement of multiple properties from individual neurons, including local morphology and transcriptional signature. We demonstrate that these automated reconstructions can be used in the same manner as manual reconstructions to understand the relationship between some, but not all, cellular properties used to define cell types. We uncover gene expression correlates of laminar innervation on multiple transcriptomically defined neuronal subclasses and types. In particular, our results reveal correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically defined subpopulation of Martinotti cells in the adult mouse neocortex.


Sujet(s)
Axones , Dendrites , Néocortex , Transcriptome , Animaux , Axones/métabolisme , Souris , Dendrites/métabolisme , Néocortex/cytologie , Néocortex/métabolisme , Neuroanatomie/méthodes , Neurones/métabolisme , Neurones/cytologie , Mâle , Analyse de profil d'expression de gènes/méthodes , Souris de lignée C57BL
13.
Cells ; 13(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38920658

RÉSUMÉ

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Sujet(s)
Cullines , Dendrites , Protéines de Drosophila , Drosophila melanogaster , Animaux , Cullines/métabolisme , Cullines/génétique , Dendrites/métabolisme , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéine huntingtine/métabolisme , Protéine huntingtine/génétique , Larve/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Microtubules/métabolisme , Cellules réceptrices sensorielles/métabolisme , Transduction du signal , Facteurs de transcription , Chaperonine contenant TCP-1
14.
Cell Rep ; 43(7): 114361, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38900634

RÉSUMÉ

Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 µm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.


Sujet(s)
Synapses , Animaux , Synapses/métabolisme , Synapses/physiologie , Dendrites/métabolisme , Dendrites/physiologie , Neurones/métabolisme , Neurones/physiologie , Souris , Région CA1 de l'hippocampe/physiologie , Région CA1 de l'hippocampe/cytologie , Potentiels post-synaptiques excitateurs/physiologie , Hippocampe/métabolisme , Hippocampe/cytologie , Femelle
15.
Cell Rep ; 43(7): 114413, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38943640

RÉSUMÉ

Basal dendrites of layer 5 cortical pyramidal neurons exhibit Na+ and N-methyl-D-aspartate receptor (NMDAR) regenerative spikes and are uniquely poised to influence somatic output. Nevertheless, due to technical limitations, how multibranch basal dendritic integration shapes and enables multiplexed barcoding of synaptic streams remains poorly mapped. Here, we combine 3D two-photon holographic transmitter uncaging, whole-cell dynamic clamp, and biophysical modeling to reveal how synchronously activated synapses (distributed and clustered) across multiple basal dendritic branches are multiplexed under quiescent and in vivo-like conditions. While dendritic regenerative Na+ spikes promote millisecond somatic spike precision, distributed synaptic inputs and NMDAR spikes regulate gain. These concomitantly occurring dendritic nonlinearities enable multiplexed information transfer amid an ongoing noisy background, including under back-propagating voltage resets, by barcoding the axo-somatic spike structure. Our results unveil a multibranch dendritic integration framework in which dendritic nonlinearities are critical for multiplexing different spatial-temporal synaptic input patterns, enabling optimal feature binding.


Sujet(s)
Dendrites , Holographie , Dendrites/métabolisme , Dendrites/physiologie , Animaux , Holographie/méthodes , Cellules pyramidales/métabolisme , Cellules pyramidales/physiologie , Synapses/métabolisme , Synapses/physiologie , Potentiels d'action/physiologie , Récepteurs du N-méthyl-D-aspartate/métabolisme , Photons , Souris , Mâle
16.
Development ; 151(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38856043

RÉSUMÉ

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Sujet(s)
Molécules d'adhérence cellulaire neuronale , Dendrites , Cortex entorhinal , Protéines de la matrice extracellulaire , Souris knockout , Protéines de tissu nerveux , Protéine reeline , Serine endopeptidases , Animaux , Cortex entorhinal/métabolisme , Dendrites/métabolisme , Molécules d'adhérence cellulaire neuronale/métabolisme , Molécules d'adhérence cellulaire neuronale/génétique , Serine endopeptidases/métabolisme , Serine endopeptidases/génétique , Protéines de tissu nerveux/métabolisme , Protéines de tissu nerveux/génétique , Protéines de la matrice extracellulaire/métabolisme , Protéines de la matrice extracellulaire/génétique , Souris , Interneurones/métabolisme , Neurones/métabolisme , Signalisation calcique
17.
EMBO Rep ; 25(7): 2861-2877, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38839944

RÉSUMÉ

In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.


Sujet(s)
Dendrites , Souris knockout , Protéines associées aux microtubules , Bulbe olfactif , Odorat , Animaux , Femelle , Mâle , Souris , Dendrites/métabolisme , Protéines associées aux microtubules/métabolisme , Protéines associées aux microtubules/génétique , Microtubules/métabolisme , Morphogenèse/génétique , Bulbe olfactif/métabolisme , Odorat/physiologie
18.
Prog Neurobiol ; 239: 102635, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38825174

RÉSUMÉ

Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.


Sujet(s)
Calcium , Dendrites , Régénération nerveuse , Dendrites/métabolisme , Dendrites/physiologie , Animaux , Calcium/métabolisme , Régénération nerveuse/physiologie , Humains , Souris , Canaux potassiques rectifiants entrants/métabolisme , Souris transgéniques
19.
Dev Neurobiol ; 84(3): 217-235, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38837880

RÉSUMÉ

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.


Sujet(s)
Protéines apparentées aux cadhérines , Cadhérines , Cortex cérébral , Dendrites , Protéine kinase C , Animaux , Cortex cérébral/métabolisme , Cortex cérébral/cytologie , Cadhérines/métabolisme , Cadhérines/génétique , Phosphorylation/physiologie , Dendrites/métabolisme , Souris , Protéine kinase C/métabolisme , Protéine kinase C/génétique , Protéine myristoylée riche en alanine et substrat de la kinase C/métabolisme , Protéine myristoylée riche en alanine et substrat de la kinase C/génétique , Motifs d'acides aminés/physiologie , Souris transgéniques
20.
Sci Rep ; 14(1): 11713, 2024 05 22.
Article de Anglais | MEDLINE | ID: mdl-38778177

RÉSUMÉ

The development of neurons is regulated by several spatiotemporally changing factors, which are crucial to give the ability of neurons to form functional networks. While external physical stimuli may impact the early developmental stages of neurons, the medium and long-term consequences of these influences have yet to be thoroughly examined. Using an animal model, this study focuses on the morphological and transcriptome changes of the hippocampus that may occur as a consequence of fetal ultrasound examination. We selectively labeled CA1 neurons of the hippocampus with in-utero electroporation to analyze their morphological features. Furthermore, certain samples also went through RNA sequencing after repetitive ultrasound exposure. US exposure significantly changed several morphological properties of the basal dendritic tree. A notable increase was also observed in the density of spines on the basal dendrites, accompanied by various alterations in individual spine morphology. Transcriptome analysis revealed several up or downregulated genes, which may explain the molecular background of these alterations. Our results suggest that US-derived changes in the dendritic trees of CA1 pyramidal cells might be connected to modification of the transcriptome of the hippocampus and may lead to an increased dendritic input.


Sujet(s)
Région CA1 de l'hippocampe , Dendrites , Transcriptome , Animaux , Région CA1 de l'hippocampe/métabolisme , Dendrites/métabolisme , Femelle , Grossesse , Cellules pyramidales/métabolisme , Souris , Hippocampe/métabolisme , Analyse de profil d'expression de gènes , Épines dendritiques/métabolisme , Échographie prénatale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE