Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 389
Filtrer
1.
Theranostics ; 14(9): 3653-3673, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948066

RÉSUMÉ

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Sujet(s)
Groupe nucléaire basolatéral , Modèles animaux de maladie humaine , Voie de signalisation Hippo , Mitochondries , Protein-Serine-Threonine Kinases , Transduction du signal , Protéines de signalisation YAP , Animaux , Souris , Mitochondries/métabolisme , Protéines de signalisation YAP/métabolisme , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/anatomopathologie , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Mâle , Stress psychologique/complications , Stress psychologique/métabolisme , Protéines 14-3-3/métabolisme , Protéines 14-3-3/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Trouble dépressif majeur/métabolisme , Trouble dépressif majeur/anatomopathologie , Dépression/métabolisme , Souris de lignée C57BL , Neurones/métabolisme , Neurones/anatomopathologie , Souris transgéniques
2.
Transl Psychiatry ; 14(1): 283, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997258

RÉSUMÉ

Return to use, or relapse, is a major challenge in the treatment of opioid use disorder (OUD). Relapse can be precipitated by several factors, including exposure to drug-conditioned cues. Identifying successful treatments to mitigate cue-induced relapse has been challenging, perhaps due to extinction memory recall (EMR) deficits. Previously, inhibition of estradiol (E2) signaling in the basolateral amygdala (BLA) impaired heroin-cue EMR. This effect was recapitulated by antagonism of BLA estrogen receptors (ER) in a sex-specific manner such that blocking ERα in males, but ERß in females, impaired EMR. However, it is unclear whether increased E2 signaling, in the BLA or systemically, enhances heroin-cue EMR. We hypothesized that ERß agonism would enhance heroin-cue EMR in a sex- and region-specific manner. To determine the capacity of E2 signaling to improve EMR, we pharmacologically manipulated ERß across several translationally designed experiments. First, male and female rats acquired heroin or sucrose self-administration. Next, during a cued extinction session, we administered diarylpropionitrile (DPN, an ERß agonist) and tested anxiety-like behavior on an open field. Subsequently, we assessed EMR in a cue-induced reinstatement test and, finally, measured ERß expression in several brain regions. Across all experiments, females took more heroin and sucrose than males and had greater responses during heroin-cued extinction. Administration of DPN in the BLA enhanced EMR in females only, driven by ERß's impacts on memory consolidation. Interestingly, however, systemic DPN administration improved EMR for heroin cues in both sexes across several different tests, but did not impact sucrose-cue EMR. Immunohistochemical analysis of ERß expression across several different brain regions showed that females only had greater expression of ERß in the basal nucleus of the BLA. Here, in several preclinical experiments, we demonstrated that ERß agonism enhances heroin-cue EMR and has potential utility in combatting cue-induced relapse.


Sujet(s)
Signaux , Récepteur bêta des oestrogènes , Extinction (psychologie) , Héroïne , Rappel mnésique , Animaux , Mâle , Femelle , Récepteur bêta des oestrogènes/agonistes , Récepteur bêta des oestrogènes/métabolisme , Héroïne/pharmacologie , Rats , Extinction (psychologie)/effets des médicaments et des substances chimiques , Extinction (psychologie)/physiologie , Rappel mnésique/effets des médicaments et des substances chimiques , Rappel mnésique/physiologie , Nitriles/pharmacologie , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Propionates/pharmacologie , Facteurs sexuels , Autoadministration , Rat Sprague-Dawley , Dépendance à l'héroïne/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
3.
Cell Mol Life Sci ; 81(1): 277, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38913115

RÉSUMÉ

Many brain diseases lead to a reduction in the number of functional neurons and it would be of value to be able to increase the number of neurons in the affected brain areas. In this study, we examined whether we can promote neural stem cells to produce mature neurons and whether an increase in the mature neurons can affect cognitive performance. We detected that the EphB2 receptor is localized in immature basolateral amygdala (BLA) neurons. We therefore aimed to increase the level of EphB2 activity in neural stem cells (NSCs) in the BLA and examine the effects on the production of mature neurons and cognition. Toward that end, we utilized a photoactivatable EphB2 construct (optoEphB2) to increase EphB2 forward signaling in NSCs in the BLA. We revealed that the activation of optoEphB2 in NSCs in the BLA increased the level of immature and mature neurons in the BLA. We further found that activation of optoEphB2 in BLA NSCs enhanced auditory, but not contextual, long-term fear memory formation. Impairing EphB2 forward signaling did not affect the level of immature and mature neurons in the BLA. This study provides evidence that NSCs can be promoted to produce mature neurons by activating EphB2 to enhance specific brain functions.


Sujet(s)
Groupe nucléaire basolatéral , Mémoire à long terme , Cellules souches neurales , Neurogenèse , Récepteur EphB2 , Animaux , Récepteur EphB2/métabolisme , Récepteur EphB2/génétique , Cellules souches neurales/métabolisme , Cellules souches neurales/cytologie , Mémoire à long terme/physiologie , Mâle , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/cytologie , Souris , Neurones/métabolisme , Neurones/cytologie , Souris de lignée C57BL , Peur/physiologie , Transduction du signal
4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38928281

RÉSUMÉ

The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.


Sujet(s)
Groupe nucléaire basolatéral , Émotions , Hippocampe , Consolidation de la mémoire , Norépinéphrine , Odorisants , Rat Wistar , Animaux , Consolidation de la mémoire/physiologie , Consolidation de la mémoire/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/physiologie , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Mâle , Rats , Norépinéphrine/métabolisme , Hippocampe/métabolisme , Hippocampe/physiologie , Hippocampe/effets des médicaments et des substances chimiques , Émotions/physiologie , Émotions/effets des médicaments et des substances chimiques , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Propranolol/pharmacologie
5.
Nat Commun ; 15(1): 4945, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858386

RÉSUMÉ

Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.


Sujet(s)
Modèles animaux de maladie humaine , Kétamine , Neurones , Cortex préfrontal , Synapses , Animaux , Kétamine/pharmacologie , Cortex préfrontal/métabolisme , Cortex préfrontal/effets des médicaments et des substances chimiques , Synapses/effets des médicaments et des substances chimiques , Synapses/métabolisme , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Souris , Mâle , Humains , Polarité de la cellule/effets des médicaments et des substances chimiques , Trouble dépressif majeur/métabolisme , Trouble dépressif majeur/traitement médicamenteux , Souris knockout , Stress psychologique , Corticostérone , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Protéines à domaine LIM/métabolisme , Protéines à domaine LIM/génétique , Acide glutamique/métabolisme , Antidépresseurs/pharmacologie
6.
Biomed Pharmacother ; 176: 116937, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38870632

RÉSUMÉ

The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.


Sujet(s)
Anesthésiques par inhalation , Groupe nucléaire basolatéral , Conscience , Noyau dorsal du raphé , Sévoflurane , Sévoflurane/pharmacologie , Animaux , Noyau dorsal du raphé/effets des médicaments et des substances chimiques , Noyau dorsal du raphé/métabolisme , Conscience/effets des médicaments et des substances chimiques , Anesthésiques par inhalation/pharmacologie , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/physiologie , Mâle , Souris , Souris de lignée C57BL , Sérotonine/métabolisme , Voies nerveuses/effets des médicaments et des substances chimiques , Voies nerveuses/physiologie , Récepteur de la sérotonine de type 5-HT1A/métabolisme , Optogénétique
7.
Sci Prog ; 107(2): 368504241253692, 2024.
Article de Anglais | MEDLINE | ID: mdl-38780474

RÉSUMÉ

The brain regulates every physiological process in the body, including metabolism. Studies investigating brain metabolism have shown that stress can alter major metabolic processes, and that these processes can vary between regions. However, no study has investigated how metabolic pathways may be altered by stressor perception, or whether stress-responsive brain regions can also regulate metabolism. The basolateral amygdala (BLA), a region important for stress and fear, has reciprocal connections to regions responsible for metabolic regulation. In this study, we investigated how BLA influences regional metabolic profiles within the hippocampus (HPC) and medial prefrontal cortex (mPFC), regions involved in regulating the stress response and stress perception, using optogenetics in male C57BL/6 mice during footshock presentation in a yoked shuttlebox paradigm based on controllable (ES) and uncontrollable (IS) stress. RNA extracted from HPC and mPFC were loaded into NanoString® Mouse Neuroinflammation Panels, which also provides a broad view of metabolic processes, for compilation of gene expression profiles. Results showed differential regulation of carbohydrate and lipid metabolism, and insulin signaling gene expression pathways in HPC and mPFC following ES and IS, and that these differences were altered in response to optogenetic excitation or inhibition of the BLA. These findings demonstrate for the first time that individual brain regions can utilize metabolites in a way that are unique to their needs and function in response to a stressor, and that vary based on stressor controllability and influence by BLA.


Sujet(s)
Groupe nucléaire basolatéral , Hippocampe , Souris de lignée C57BL , Optogénétique , Cortex préfrontal , Stress psychologique , Animaux , Mâle , Groupe nucléaire basolatéral/métabolisme , Souris , Stress psychologique/métabolisme , Stress psychologique/physiopathologie , Cortex préfrontal/métabolisme , Hippocampe/métabolisme , Encéphale/métabolisme , Métabolisme lipidique
8.
Dev Psychobiol ; 66(5): e22501, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38807259

RÉSUMÉ

Selective serotonin reuptake inhibitors, such as fluoxetine (Prozac), are commonly prescribed pharmacotherapies for anxiety. Fluoxetine may be a useful adjunct because it can reduce the expression of learned fear in adult rodents. This effect is associated with altered expression of perineuronal nets (PNNs) in the amygdala and hippocampus, two brain regions that regulate fear. However, it is unknown whether fluoxetine has similar effects in adolescents. Here, we investigated the effect of fluoxetine exposure during adolescence or adulthood on context fear memory and PNNs in the basolateral amygdala (BLA), the CA1 subregion of the hippocampus, and the medial prefrontal cortex in rats. Fluoxetine impaired context fear memory in adults but not in adolescents. Further, fluoxetine increased the number of parvalbumin (PV)-expressing neurons surrounded by a PNN in the BLA and CA1, but not in the medial prefrontal cortex, at both ages. Contrary to previous reports, fluoxetine did not shift the percentage of PNNs toward non-PV cells in either the BLA or CA1 in the adults, or adolescents. These findings demonstrate that fluoxetine differentially affects fear memory in adolescent and adult rats but does not appear to have age-specific effects on PNNs.


Sujet(s)
Peur , Fluoxétine , Mémoire , Cortex préfrontal , Inbiteurs sélectifs de la recapture de la sérotonine , Fluoxétine/pharmacologie , Fluoxétine/administration et posologie , Animaux , Peur/effets des médicaments et des substances chimiques , Peur/physiologie , Mâle , Rats , Inbiteurs sélectifs de la recapture de la sérotonine/pharmacologie , Inbiteurs sélectifs de la recapture de la sérotonine/administration et posologie , Cortex préfrontal/effets des médicaments et des substances chimiques , Mémoire/effets des médicaments et des substances chimiques , Mémoire/physiologie , Facteurs âges , Rat Sprague-Dawley , Parvalbumines/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Réseau nerveux/effets des médicaments et des substances chimiques
9.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-38772224

RÉSUMÉ

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Sujet(s)
Groupe nucléaire basolatéral , Homologue-4 de la protéine Disks Large , Mémoire , Morphine , Syndrome de sevrage , Animaux , Morphine/pharmacologie , Syndrome de sevrage/métabolisme , Mâle , Souris , Mémoire/effets des médicaments et des substances chimiques , Homologue-4 de la protéine Disks Large/métabolisme , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Complément C1q/métabolisme , Souris de lignée C57BL , Naloxone/pharmacologie
10.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Article de Anglais | MEDLINE | ID: mdl-38759018

RÉSUMÉ

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Sujet(s)
Peptides bêta-amyloïdes , Groupe nucléaire basolatéral , Région CA1 de l'hippocampe , Coumarines , Souris transgéniques , Animaux , Souris , Peptides bêta-amyloïdes/métabolisme , Région CA1 de l'hippocampe/métabolisme , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Coumarines/pharmacologie , Maladie d'Alzheimer/métabolisme , Mâle , Comportement social , Modèles animaux de maladie humaine , Anxiété/métabolisme , Interaction sociale/effets des médicaments et des substances chimiques , Voies nerveuses/effets des médicaments et des substances chimiques , Optogénétique
11.
Brain Res Bull ; 213: 110975, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38734185

RÉSUMÉ

Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.


Sujet(s)
Gyrus denté , Troubles de la mémoire , Stress oxydatif , Extraits de plantes , Rat Wistar , Contention physique , Stress psychologique , Terminalia , Animaux , Terminalia/composition chimique , Mâle , Stress psychologique/métabolisme , Rats , Stress oxydatif/effets des médicaments et des substances chimiques , Stress oxydatif/physiologie , Gyrus denté/métabolisme , Extraits de plantes/pharmacologie , Synapses/effets des médicaments et des substances chimiques , Synapses/métabolisme , Synapses/anatomopathologie , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Hippocampe/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Noyau central de l'amygdale/métabolisme , Noyau central de l'amygdale/effets des médicaments et des substances chimiques , Neuroprotecteurs/pharmacologie , Épines dendritiques/effets des médicaments et des substances chimiques , Amygdale (système limbique)/métabolisme
12.
Nat Commun ; 15(1): 3455, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38658548

RÉSUMÉ

Understanding how distinct functional circuits are coordinated to fine-tune mood and behavior is of fundamental importance. Here, we observe that within the dense projections from basolateral amygdala (BLA) to bed nucleus of stria terminalis (BNST), there are two functionally opposing pathways orchestrated to enable contextually appropriate expression of anxiety-like behaviors in male mice. Specifically, the anterior BLA neurons predominantly innervate the anterodorsal BNST (adBNST), while their posterior counterparts send massive fibers to oval BNST (ovBNST) with moderate to adBNST. Optogenetic activation of the anterior and posterior BLA inputs oppositely regulated the activity of adBNST neurons and anxiety-like behaviors, via disengaging and engaging the inhibitory ovBNST-to-adBNST microcircuit, respectively. Importantly, the two pathways exhibited synchronized but opposite responses to both anxiolytic and anxiogenic stimuli, partially due to their mutual inhibition within BLA and the different inputs they receive. These findings reveal synergistic interactions between two BLA-to-BNST pathways for appropriate anxiety expression with ongoing environmental demands.


Sujet(s)
Anxiété , Groupe nucléaire basolatéral , Optogénétique , Noyaux du septum , Animaux , Mâle , Noyaux du septum/physiologie , Noyaux du septum/métabolisme , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/physiologie , Souris , Comportement animal/physiologie , Neurones/métabolisme , Neurones/physiologie , Souris de lignée C57BL , Voies nerveuses/physiologie
13.
Curr Biol ; 34(9): 1918-1929.e5, 2024 05 06.
Article de Anglais | MEDLINE | ID: mdl-38636514

RÉSUMÉ

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Sujet(s)
Consommation de boisson , Cortex insulaire , Récepteur cannabinoïde de type CB1 , Animaux , Récepteur cannabinoïde de type CB1/métabolisme , Mâle , Souris , Consommation de boisson/physiologie , Cortex insulaire/physiologie , Cannabinoïdes/métabolisme , Cannabinoïdes/pharmacologie , Neurones/physiologie , Neurones/métabolisme , Souris de lignée C57BL , Plasticité neuronale/physiologie , Groupe nucléaire basolatéral/physiologie , Groupe nucléaire basolatéral/métabolisme
14.
Cell Rep ; 43(5): 114151, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38656872

RÉSUMÉ

The mammalian brain can store and retrieve memories of related events as distinct memories and remember common features of those experiences. How it computes this function remains elusive. Here, we show in rats that recent memories of two closely timed auditory fear events share overlapping neuronal ensembles in the basolateral amygdala (BLA) and are functionally linked. However, remote memories have reduced neuronal overlap and are functionally independent. The activity of parvalbumin (PV)-expressing neurons in the BLA plays a crucial role in forming separate remote memories. Chemogenetic blockade of PV preserves individual remote memories but prevents their segregation, resulting in reciprocal associations. The hippocampus drives this process through specific excitatory connections with BLA GABAergic interneurons. These findings provide insights into the neuronal mechanisms that minimize the overlap between distinct remote memories and enable the retrieval of related memories separately.


Sujet(s)
Amygdale (système limbique) , Hippocampe , Parvalbumines , Animaux , Hippocampe/physiologie , Hippocampe/métabolisme , Rats , Mâle , Amygdale (système limbique)/physiologie , Parvalbumines/métabolisme , Groupe nucléaire basolatéral/physiologie , Groupe nucléaire basolatéral/métabolisme , Interneurones/physiologie , Interneurones/métabolisme , Mémoire/physiologie , Peur/physiologie , Neurones GABAergiques/métabolisme , Neurones GABAergiques/physiologie , Neurones/physiologie , Neurones/métabolisme , Voies nerveuses/physiologie
15.
Neuron ; 112(13): 2197-2217.e7, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38642554

RÉSUMÉ

Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.


Sujet(s)
Astrocytes , Groupe nucléaire basolatéral , Souris transgéniques , Protéines de tissu nerveux , Neurones , Animaux , Astrocytes/métabolisme , Souris , Neurones/métabolisme , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Groupe nucléaire basolatéral/métabolisme , Optogénétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Mâle , Prise de risque , Modèles animaux de maladie humaine , Souris de lignée C57BL
16.
CNS Neurosci Ther ; 30(2): e14611, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-38353051

RÉSUMÉ

AIMS: Basolateral amygdala (BLA), as a center for stress responses and emotional regulation, is involved in visceral hypersensitivity of irritable bowel syndrome (IBS) induced by stress. In the present study, we aimed to investigate the role of EphB2 receptor (EphB2) in BLA and explore the underlying mechanisms in this process. METHODS: Visceral hypersensitivity was induced by water avoidance stress (WAS). Elevated plus maze test, forced swimming test, and sucrose preference test were applied to assess anxiety- and depression-like behaviors. Ibotenic acid or lentivirus was used to inactivate BLA in either the induction or maintenance stage of visceral hypersensitivity. The expression of protein was determined by quantitative PCR, immunofluorescence, and western blot. RESULTS: EphB2 expression was increased in BLA in WAS rats. Inactivation of BLA or downregulation of EphB2 in BLA failed to induce visceral hypersensitivity as well as anxiety-like behaviors. However, during the maintenance stage of visceral pain, visceral hypersensitivity was only partially relieved but anxiety-like behaviors were abolished by inactivation of BLA or downregulation of EphB2 in BLA. Chronic WAS increased the expression of EphB2, N-methyl-D-aspartate receptors (NMDARs), and postsynaptic density protein (PSD95) in BLA. Downregulation of EphB2 in BLA reduced NMDARs and PSD95 expression in WAS rats. However, activation of NMDARs after the knockdown of EphB2 expression still triggered visceral hypersensitivity and anxiety-like behaviors. CONCLUSIONS: Taken together, the results suggest that EphB2 in BLA plays an essential role in inducing visceral hypersensitivity. In the maintenance stage, the involvement of EphB2 is crucial but not sufficient. The increase in EphB2 induced by WAS may enhance synaptic plasticity in BLA through upregulating NMDARs, which results in IBS-like symptoms. These findings may give insight into the treatment of IBS and related psychological distress.


Sujet(s)
Groupe nucléaire basolatéral , Syndrome du côlon irritable , Douleur viscérale , Animaux , Rats , Groupe nucléaire basolatéral/métabolisme , Syndrome du côlon irritable/métabolisme , Syndrome du côlon irritable/psychologie , Rat Sprague-Dawley , Récepteur EphB2/métabolisme , Stress psychologique/psychologie , Douleur viscérale/métabolisme , Eau/métabolisme
17.
Nature ; 627(8003): 374-381, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38326616

RÉSUMÉ

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Sujet(s)
Astrocytes , Communication cellulaire , Analyse de profil d'expression de gènes , Mémoire à long terme , Neurones , Astrocytes/cytologie , Astrocytes/métabolisme , Astrocytes/physiologie , Groupe nucléaire basolatéral/cytologie , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/physiologie , Facteur neurotrophique dérivé du cerveau/métabolisme , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Mémoire à long terme/physiologie , Mitogen-Activated Protein Kinases/métabolisme , Neurones/cytologie , Neurones/métabolisme , Neurones/physiologie , Analyse de séquence d'ARN , Imagerie de molécules uniques , Analyse de l'expression du gène de la cellule unique , Ubiquitination
18.
Br J Pharmacol ; 181(13): 1897-1915, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38413375

RÉSUMÉ

BACKGROUND AND PURPOSE: Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH: Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS: Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS: These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.


Sujet(s)
Protéines d'ancrage aux protéines kinases A , Groupe nucléaire basolatéral , Dépression , Lipoylation , Souris de lignée C57BL , Animaux , Protéines d'ancrage aux protéines kinases A/métabolisme , Mâle , Souris , Dépression/métabolisme , Dépression/psychologie , Groupe nucléaire basolatéral/métabolisme , Stress psychologique/métabolisme , Comportement animal
19.
Amino Acids ; 56(1): 13, 2024 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-38340185

RÉSUMÉ

Behavioral and functional studies describe hemispheric asymmetry in anxiety and metabolic behaviors in responses to stress. However, no study has reported serotonergic receptor (the 5-HT1A receptor) lateralization in the basolateral amygdala (BLA) in vivo on anxiety and metabolic behaviors under stress. In the present study, the effect of unilateral and bilateral suppression of the 5-HT1A receptor in the BLA on anxiety, and metabolic responses to chronic restraint stress was assessed. Male Wistar rats 7 days after cannulation into the BLA received chronic restraint stress for 14 consecutive days. 20 minutes before induction of stress, WAY-100-635 (selective 5-HT1A antagonist) or sterile saline (vehicle) was administered either uni- or bi-laterally into the BLA. Behavioral (elevated plus maze; EPM, and open field test), and metabolic parameter studies were performed. Results showed that stress causes a significant increase in weight gain compared to control. In the non-stress condition, the left and bilaterally, and in the stress condition the right, left, and both sides, inhibition of 5-HT1A in the BLA reduced weight gain. In the restraint stress condition, only inhibition of the 5-HT1A receptor in the left BLA led to decreased food intake compared to the control group. In stress conditions, inhibition of the 5-HT1A receptor on the right, left, and bilateral BLA increased water intake compared to the stress group. Inhibition of the 5-HT1A receptor on the left side of the BLA by WAY-100-635 induced anxiety-like behaviors in stressed rats. Similarly, WAY-100-635 on the left BLA effectively caused anxiety-like behaviors in both EPM and open field tests in the control animals. In conclusion, it seems that 5-HT1A receptors in the left BLA are more responsible for anxiety-like behaviors and metabolic changes in responses to stress.


Sujet(s)
Groupe nucléaire basolatéral , Rats , Mâle , Animaux , Groupe nucléaire basolatéral/métabolisme , Sérotonine/métabolisme , Récepteur de la sérotonine de type 5-HT1A/métabolisme , Rat Wistar , Anxiété , Prise de poids
20.
Mol Psychiatry ; 29(3): 730-741, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38221548

RÉSUMÉ

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Sujet(s)
Groupe nucléaire basolatéral , Cocaïne , Consolidation de la mémoire , Neurones , Cortex préfrontal , Animaux , Consolidation de la mémoire/effets des médicaments et des substances chimiques , Consolidation de la mémoire/physiologie , Cocaïne/pharmacologie , Mâle , Rats , Cortex préfrontal/effets des médicaments et des substances chimiques , Cortex préfrontal/métabolisme , Cortex préfrontal/physiologie , Groupe nucléaire basolatéral/effets des médicaments et des substances chimiques , Groupe nucléaire basolatéral/métabolisme , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Mémoire à long terme/effets des médicaments et des substances chimiques , Mémoire à long terme/physiologie , Signaux , Rat Sprague-Dawley , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Autoadministration , Épines dendritiques/effets des médicaments et des substances chimiques , Épines dendritiques/métabolisme , Épines dendritiques/physiologie , Troubles liés à la cocaïne/métabolisme , Troubles liés à la cocaïne/physiopathologie , Mémoire/effets des médicaments et des substances chimiques , Mémoire/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...