Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.456
Filtrer
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39000550

RÉSUMÉ

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Sujet(s)
Mitochondries , Canaux potassiques , Roténone , Uridine , Animaux , Uridine/pharmacologie , Uridine/métabolisme , Rats , Canaux potassiques/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mâle , Modèles animaux de maladie humaine , Maladie de Parkinson/métabolisme , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/étiologie , Maladie de Parkinson/anatomopathologie , Substantia nigra/métabolisme , Substantia nigra/effets des médicaments et des substances chimiques , Substantia nigra/anatomopathologie , Neuroprotecteurs/pharmacologie , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Rat Wistar , Acides capriques/pharmacologie , Hydroxyacides/pharmacologie
2.
Proc Natl Acad Sci U S A ; 121(30): e2321972121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39008677

RÉSUMÉ

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.


Sujet(s)
Antioxydants , COVID-19 , Souris transgéniques , Mitochondries , Phosphorylation oxydative , SARS-CoV-2 , Animaux , Souris , COVID-19/virologie , COVID-19/métabolisme , COVID-19/immunologie , COVID-19/anatomopathologie , Antioxydants/métabolisme , Antioxydants/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , SARS-CoV-2/effets des médicaments et des substances chimiques , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Humains , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Poumon/virologie , Poumon/anatomopathologie , Poumon/métabolisme , Espèces réactives de l'oxygène/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Catalase/métabolisme , Catalase/génétique , Traitements médicamenteux de la COVID-19 , Modèles animaux de maladie humaine , Immunité innée
3.
Cell Death Dis ; 15(7): 475, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961053

RÉSUMÉ

Deregulated apoptosis signaling is characteristic for many cancers and contributes to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Apoptosis is controlled by different pro- and anti-apoptotic molecules. Inhibition of anti-apoptotic molecules like B-cell lymphoma 2 (BCL-2) has been developed as therapeutic strategy. Venetoclax (VEN), a selective BCL-2 inhibitor has shown clinical activity in different lymphoid malignancies and is currently evaluated in first clinical trials in BCP-ALL. However, insensitivity to VEN has been described constituting a major clinical concern. Here, we addressed and modeled VEN-resistance in BCP-ALL, investigated the underlying mechanisms in cell lines and patient-derived xenograft (PDX) samples and identified potential strategies to overcome VEN-insensitivity. Leukemia lines with VEN-specific resistance were generated in vitro and further characterized using RNA-seq analysis. Interestingly, gene sets annotated to the citric/tricarboxylic acid cycle and the respiratory electron transport chain were significantly enriched and upregulated, indicating increased mitochondrial metabolism in VEN-resistant ALL. Metabolic profiling showed sustained high mitochondrial metabolism in VEN-resistant lines as compared to control lines. Accordingly, primary PDX-ALL samples with intrinsic VEN-insensitivity showed higher oxygen consumption and ATP production rates, further highlighting that increased mitochondrial activity is a characteristic feature of VEN-resistant ALL. VEN-resistant PDX-ALL showed significant higher mitochondrial DNA content and differed in mitochondria morphology with significantly larger and elongated structures, further corroborating our finding of augmented mitochondrial metabolism upon VEN-resistance. Using Oligomycin, an inhibitor of the complex V/ATPase subunit, we found synergistic activity and apoptosis induction in VEN-resistant BCP-ALL cell lines and PDX samples, demonstrating that acquired and intrinsic VEN-insensitivity can be overcome by co-targeting BCL-2 and the OxPhos pathway. These findings of reprogrammed, high mitochondrial metabolism in VEN-resistance and synergistic activity upon co-targeting BCL-2 and oxidative phosphorylation strongly suggest further preclinical and potential clinical evaluation in VEN-resistant BCP-ALL.


Sujet(s)
Composés hétérocycliques bicycliques , Résistance aux médicaments antinéoplasiques , Mitochondries , Phosphorylation oxydative , Leucémie-lymphome lymphoblastique à précurseurs B et T , Sulfonamides , Composés hétérocycliques bicycliques/pharmacologie , Humains , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Sulfonamides/pharmacologie , Leucémie-lymphome lymphoblastique à précurseurs B et T/métabolisme , Leucémie-lymphome lymphoblastique à précurseurs B et T/anatomopathologie , Leucémie-lymphome lymphoblastique à précurseurs B et T/traitement médicamenteux , Leucémie-lymphome lymphoblastique à précurseurs B et T/génétique , Animaux , Lignée cellulaire tumorale , Souris , Apoptose/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Tests d'activité antitumorale sur modèle de xénogreffe , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/génétique
4.
Nat Commun ; 15(1): 5759, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982116

RÉSUMÉ

Type I interferons have been well recognized for their roles in various types of immune cells during tumor immunotherapy. However, their direct effects on tumor cells are less understood. Oxidative phosphorylation is typically latent in tumor cells. Whether oxidative phosphorylation can be targeted for immunotherapy remains unclear. Here, we find that tumor cell responsiveness to type I, but not type II interferons, is essential for CD47-SIRPα blockade immunotherapy in female mice. Mechanistically, type I interferons directly reprogram tumor cell metabolism by activating oxidative phosphorylation for ATP production in an ISG15-dependent manner. ATP extracellular release is also promoted by type I interferons due to enhanced secretory autophagy. Functionally, tumor cells with genetic deficiency in oxidative phosphorylation or autophagy are resistant to CD47-SIRPα blockade. ATP released upon CD47-SIRPα blockade is required for antitumor T cell response induction via P2X7 receptor-mediated dendritic cell activation. Based on this mechanism, combinations with inhibitors of ATP-degrading ectoenzymes, CD39 and CD73, are designed and show synergistic antitumor effects with CD47-SIRPα blockade. Together, these data reveal an important role of type I interferons on tumor cell metabolic reprograming for tumor immunotherapy and provide rational strategies harnessing this mechanism for enhanced efficacy of CD47-SIRPα blockade.


Sujet(s)
Adénosine triphosphate , Antigènes CD47 , Interféron de type I , Phosphorylation oxydative , Récepteurs immunologiques , Transduction du signal , Animaux , Antigènes CD47/métabolisme , Antigènes CD47/génétique , Interféron de type I/métabolisme , Récepteurs immunologiques/métabolisme , Récepteurs immunologiques/génétique , Femelle , Souris , Adénosine triphosphate/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Souris de lignée C57BL , Immunothérapie/méthodes , Humains , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Récepteurs purinergiques P2X7/métabolisme , Récepteurs purinergiques P2X7/génétique , Autophagie/effets des médicaments et des substances chimiques , Apyrase/métabolisme , Souris knockout , Tumeurs/immunologie , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Cytokines/métabolisme
5.
Cell Physiol Biochem ; 58(3): 226-249, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38857359

RÉSUMÉ

BACKGROUND/AIMS: Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session. METHODS: We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation. RESULTS: The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment. CONCLUSION: Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.


Sujet(s)
Arginine , Hypoxie , Consommation d'oxygène , Rat Wistar , Animaux , Mâle , Hypoxie/métabolisme , Rats , Arginine/pharmacologie , Arginine/analogues et dérivés , Arginine/métabolisme , Consommation d'oxygène/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Monoxyde d'azote/métabolisme , Oxygène/métabolisme , Adaptation physiologique , Mitochondries du foie/métabolisme , Mitochondries du foie/effets des médicaments et des substances chimiques , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Peroxydation lipidique/effets des médicaments et des substances chimiques , Nitrites/métabolisme
6.
Nano Lett ; 24(27): 8257-8267, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38920296

RÉSUMÉ

Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of ß-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.


Sujet(s)
Différenciation cellulaire , Canaux ioniques , Ostéogenèse , Propriétés de surface , Titane , bêta-Caténine , Ostéogenèse/effets des médicaments et des substances chimiques , Titane/composition chimique , Titane/pharmacologie , bêta-Caténine/métabolisme , Canaux ioniques/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Animaux , Prolifération cellulaire/effets des médicaments et des substances chimiques , Ostéo-intégration/effets des médicaments et des substances chimiques , Souris , Nanopores , Nanotubes/composition chimique , Humains , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Prothèses et implants , Adhérence cellulaire/effets des médicaments et des substances chimiques
7.
Molecules ; 29(12)2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38930984

RÉSUMÉ

Halogenated boroxine K2[B3O3F4OH] (HB), an inorganic derivative of cyclic anhydride of boronic acid, is patented as a boron-containing compound with potential for the treatment of both benign and malignant skin changes. HB has effectively inhibited the growth of several carcinoma cell lines. Because of the growing interest in autophagy induction as a therapeutic approach in bladder carcinoma (BC), we aimed to assess the effects of HB on metabolic phenotype and autophagy levels in 5637 human bladder carcinoma cells (BC). Cytotoxicity was evaluated using the alamar blue assay, and the degree of autophagy was determined microscopically. Mitochondrial respiration and glycolysis were measured simultaneously. The relative expression of autophagy-related genes BECN1, P62, BCL-2, and DRAM1 was determined by real-time PCR. HB affected cell growth, while starvation significantly increased the level of autophagy in the positive control compared to the basal level of autophagy in the untreated negative control. In HB-treated cultures, the degree of autophagy was higher compared to the basal level, and metabolic phenotypes were altered; both glycolysis and oxidative phosphorylation (OXPHOS) were decreased by HB at 0.2 and 0.4 mg/mL. Gene expression was deregulated towards autophagy induction and expansion. In conclusion, HB disrupted the bioenergetic metabolism and reduced the intracellular survival potential of BC cells. Further molecular studies are needed to confirm these findings and investigate their applicative potential.


Sujet(s)
Autophagie , Tumeurs de la vessie urinaire , Humains , Autophagie/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Tumeurs de la vessie urinaire/métabolisme , Tumeurs de la vessie urinaire/traitement médicamenteux , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/génétique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques , Phénotype , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Halogénation
8.
Sci Rep ; 14(1): 13852, 2024 06 15.
Article de Anglais | MEDLINE | ID: mdl-38879681

RÉSUMÉ

Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.


Sujet(s)
Asphyxie , Fumarate de diméthyle , Modèles animaux de maladie humaine , Arrêt cardiaque , Mitochondries , Animaux , Arrêt cardiaque/métabolisme , Arrêt cardiaque/traitement médicamenteux , Asphyxie/métabolisme , Asphyxie/traitement médicamenteux , Asphyxie/complications , Suidae , Fumarate de diméthyle/pharmacologie , Fumarate de diméthyle/usage thérapeutique , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Encéphale/métabolisme , Encéphale/effets des médicaments et des substances chimiques , Encéphale/anatomopathologie , Humains , Myocarde/métabolisme , Myocarde/anatomopathologie , Phosphorylation oxydative/effets des médicaments et des substances chimiques
9.
Sci Transl Med ; 16(751): eadi5336, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38865484

RÉSUMÉ

In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.


Sujet(s)
Repositionnement des médicaments , Leucémie myéloïde chronique BCR-ABL positive , Mitochondries , Humains , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Leucémie myéloïde chronique BCR-ABL positive/traitement médicamenteux , Leucémie myéloïde chronique BCR-ABL positive/anatomopathologie , Leucémie myéloïde chronique BCR-ABL positive/métabolisme , Animaux , Lignée cellulaire tumorale , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Pipérazines/pharmacologie , Pipérazines/usage thérapeutique , Souris , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Calcium/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Mésilate d'imatinib/pharmacologie , Mésilate d'imatinib/usage thérapeutique
10.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38840216

RÉSUMÉ

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Sujet(s)
Lipopolysaccharides , Souris de lignée C57BL , Mitochondries , Facteur de transcription NF-kappa B , Phosphorylation oxydative , , Récepteurs de la sphingosine-1-phosphate , Animaux , Humains , Mâle , Souris , Cytokines/métabolisme , Cellules endothéliales/métabolisme , Cellules endothéliales/effets des médicaments et des substances chimiques , Inflammation/anatomopathologie , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Poumon/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Facteur de transcription NF-kappa B/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Agents protecteurs/pharmacologie , Récepteurs aux lysosphingolipides/métabolisme , Récepteurs aux lysosphingolipides/antagonistes et inhibiteurs , /induit chimiquement , /métabolisme , /anatomopathologie , Récepteurs de la sphingosine-1-phosphate/métabolisme , Récepteurs de la sphingosine-1-phosphate/antagonistes et inhibiteurs
11.
Cell Commun Signal ; 22(1): 336, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898530

RÉSUMÉ

Excessive scar formation such as hypertrophic scars and keloids, resulting from trauma or surgical procedures, present a widespread concern for causing disfigurement, discomfort, and functional limitations. Macrophages play pivotal roles in maintaining tissue homeostasis, orchestrating tissue development, repair, and immune responses, and its transition of function and phenotype plays a critical role in regulating the balance between inflammation and tissue regeneration, which is central to cutaneous scar formation. Recent evidence suggests the involvement of Sonic Hedgehog (SHH) in the induction of anti-inflammatory M2-like macrophage phenotypes within tumor microenvironments. In our study, we observed increased SHH expression in human hypertrophic scars, prompting an investigation into its influence on macrophage polarization, efferocytosis, and cutaneous scar formation. Our findings reveal that SHH can enhance oxidative phosphorylation (OXPHOS) in macrophages, augment macrophage efferocytosis, and promote M2 polarization, finally contributing to the progression of cutaneous scar formation. Notably, targeting SHH signaling with vismodegib exhibited promising potential in mitigating scar formation by reversing the effects of enhanced OXPHOS and M2 polarization in macrophages. In conclusion, this study underscores the critical roles of macrophage metabolism, particularly OXPHOS, efferocytosis and SHH signaling in cutaneous scar formation. Understanding these mechanisms provides new avenues for potential interventions and scar prevention strategies.


Sujet(s)
Protéines Hedgehog , Macrophages , Phosphorylation oxydative , Phagocytose , Protéines Hedgehog/métabolisme , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Humains , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Animaux , Phagocytose/effets des médicaments et des substances chimiques , Cicatrice hypertrophique/métabolisme , Cicatrice hypertrophique/anatomopathologie , Souris , Transduction du signal/effets des médicaments et des substances chimiques , Cicatrice/anatomopathologie , Cicatrice/métabolisme , Souris de lignée C57BL , Anilides/pharmacologie , Pyridines/pharmacologie ,
12.
Cell Biol Int ; 48(8): 1185-1197, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38773713

RÉSUMÉ

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.


Sujet(s)
Tumeurs du sein , Mouvement cellulaire , Transition épithélio-mésenchymateuse , Acide lactique , Transporteurs d'acides monocarboxyliques , Tumeurs de la bouche , Humains , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Tumeurs du sein/traitement médicamenteux , Lignée cellulaire tumorale , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Femelle , Tumeurs de la bouche/métabolisme , Tumeurs de la bouche/anatomopathologie , Tumeurs de la bouche/traitement médicamenteux , Acide lactique/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Coumarines/pharmacologie , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques , Symporteurs/métabolisme , Symporteurs/génétique , Protéines de transport de la membrane mitochondriale/métabolisme , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Pyrimidinones , Thiophènes
13.
J Transl Med ; 22(1): 437, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38720345

RÉSUMÉ

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Sujet(s)
Durapatite , Glycolyse , Macrophages , Phosphorylation oxydative , Rat Sprague-Dawley , Animaux , Durapatite/composition chimique , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques , Rats , Suidae , Prolifération cellulaire/effets des médicaments et des substances chimiques , Mâle , Ostéogenèse/effets des médicaments et des substances chimiques , Crâne/anatomopathologie , Crâne/effets des médicaments et des substances chimiques , Souris , Microenvironnement cellulaire/effets des médicaments et des substances chimiques , Cellules RAW 264.7 , Os et tissu osseux/métabolisme , Os et tissu osseux/effets des médicaments et des substances chimiques
14.
Oncogene ; 43(26): 2038-2050, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38750263

RÉSUMÉ

Docetaxel (DX) serves as a palliative treatment option for metastatic prostate cancer (PCa). Despite initial remission, acquired DX resistance is inevitable. The mechanisms behind DX resistance have not yet been deciphered, but a mesenchymal phenotype is associated with DX resistance. Mesenchymal phenotypes have been linked to metabolic rewiring, obtaining most ATP production by oxidative phosphorylation (OXPHOS) powered substantially by glutamine (Gln). Likewise, Gln is known to play an essential role in modulating bioenergetic, redox homeostasis and autophagy. Herein, investigations of Gln deprivation on DX-sensitive and -resistant (DR) PCa cells revealed that the DR cell sub-lines were susceptible to Gln deprivation. Mechanistically, Gln deprivation reduced OXPHOS and ATP levels, causing a disturbance in cell cycle progression. Genetic and chemical inhibition of the Gln-metabolism key protein GLS1 could validate the Gln deprivation results, thereby representing a valid therapeutic target. Moreover, immunohistological investigation of GLS1 revealed a high-expressing GLS1 subgroup post-docetaxel failure, exhibiting low overall survival. This subgroup presents an intriguing opportunity for targeted therapy focusing on glutamine metabolism. Thus, these findings highlight a possible clinical rationale for the chemical inhibition of GLS1 as a therapeutic strategy to target mesenchymal DR PCa cells, thereby delaying accelerated tumour progression.


Sujet(s)
Prolifération cellulaire , Docetaxel , Résistance aux médicaments antinéoplasiques , Glutamine , Tumeurs de la prostate , Mâle , Humains , Glutamine/métabolisme , Docetaxel/pharmacologie , Tumeurs de la prostate/anatomopathologie , Tumeurs de la prostate/métabolisme , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/génétique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Glutaminase/métabolisme , Glutaminase/antagonistes et inhibiteurs , Glutaminase/génétique , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique
15.
Nature ; 630(8015): 198-205, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38720074

RÉSUMÉ

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Sujet(s)
Phosphatidylinositol 3-kinases de classe Ib , Leucémies , Transduction du signal , p21-Activated Kinases , Animaux , Humains , Souris , Lignée cellulaire , Phosphatidylinositol 3-kinases de classe Ib/génétique , Phosphatidylinositol 3-kinases de classe Ib/métabolisme , Cytarabine/pharmacologie , Cytarabine/usage thérapeutique , Leucémies/traitement médicamenteux , Leucémies/enzymologie , Leucémies/génétique , Leucémies/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , p21-Activated Kinases/antagonistes et inhibiteurs , p21-Activated Kinases/métabolisme , Phosphorylation , Tests d'activité antitumorale sur modèle de xénogreffe
16.
FEBS Lett ; 598(13): 1655-1666, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38750637

RÉSUMÉ

Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.


Sujet(s)
Complexe IV de la chaîne respiratoire , Fongicides industriels , Mitochondries , Simulation de docking moléculaire , Saccharomyces cerevisiae , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/croissance et développement , Saccharomyces cerevisiae/enzymologie , Complexe IV de la chaîne respiratoire/métabolisme , Complexe IV de la chaîne respiratoire/antagonistes et inhibiteurs , Fongicides industriels/pharmacologie , Fongicides industriels/toxicité , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Consommation d'oxygène/effets des médicaments et des substances chimiques , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/antagonistes et inhibiteurs
17.
Cell Rep Med ; 5(5): 101519, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38692271

RÉSUMÉ

Osteosarcoma (OS) is the most common malignant bone tumor with a poor prognosis. Here, we show that the nuclear receptor RORγ may serve as a potential therapeutic target in OS. OS exhibits a hyperactivated oxidative phosphorylation (OXPHOS) program, which fuels the carbon source to promote tumor progression. We found that RORγ is overexpressed in OS tumors and is linked to hyperactivated OXPHOS. RORγ induces the expression of PGC-1ß and physically interacts with it to activate the OXPHOS program by upregulating the expression of respiratory chain component genes. Inhibition of RORγ strongly inhibits OXPHOS activation, downregulates mitochondrial functions, and increases ROS production, which results in OS cell apoptosis and ferroptosis. RORγ inverse agonists strongly suppressed OS tumor growth and progression and sensitized OS tumors to chemotherapy. Taken together, our results indicate that RORγ is a critical regulator of the OXPHOS program in OS and provides an effective therapeutic strategy for this deadly disease.


Sujet(s)
Tumeurs osseuses , Mitochondries , Membre-3 du groupe F de la sous-famille-1 de récepteurs nucléaires , Ostéosarcome , Phosphorylation oxydative , Ostéosarcome/métabolisme , Ostéosarcome/anatomopathologie , Ostéosarcome/génétique , Humains , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Membre-3 du groupe F de la sous-famille-1 de récepteurs nucléaires/métabolisme , Membre-3 du groupe F de la sous-famille-1 de récepteurs nucléaires/génétique , Lignée cellulaire tumorale , Animaux , Tumeurs osseuses/métabolisme , Tumeurs osseuses/anatomopathologie , Tumeurs osseuses/génétique , Tumeurs osseuses/traitement médicamenteux , Souris , Espèces réactives de l'oxygène/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux , Ferroptose/génétique , Ferroptose/effets des médicaments et des substances chimiques , Souris nude , Mâle , Prolifération cellulaire , Protéines de liaison à l'ARN
18.
Article de Anglais | MEDLINE | ID: mdl-38788347

RÉSUMÉ

BACKGROUND: Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS: The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS: LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION: Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.


Sujet(s)
Différenciation cellulaire , Acide linoléique , Ostéoblastes , Phosphorylation oxydative , Animaux , Ostéoblastes/effets des médicaments et des substances chimiques , Ostéoblastes/métabolisme , Ostéoblastes/cytologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Souris , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Acide linoléique/pharmacologie , Acide linoléique/métabolisme , Phosphatase alcaline/métabolisme , Sous-unité alpha 1 du facteur CBF/métabolisme , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/métabolisme , Cellules cultivées
19.
Redox Biol ; 73: 103191, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38762951

RÉSUMÉ

Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.


Sujet(s)
Hème , Inflammation , Lipopolysaccharides , Macrophages , Monoxyde d'azote , Humains , Hème/métabolisme , Animaux , Monoxyde d'azote/métabolisme , Souris , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Lipopolysaccharides/pharmacologie , Inflammation/métabolisme , Nitric oxide synthase type II/métabolisme , Nitric oxide synthase type II/génétique , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Métabolisme énergétique/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques
20.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38697987

RÉSUMÉ

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Sujet(s)
Antinéoplasiques , Prolifération cellulaire , Complexe I de la chaîne respiratoire , Mitochondries , Protéines de Saccharomyces cerevisiae , Animaux , Humains , Complexe I de la chaîne respiratoire/métabolisme , Complexe I de la chaîne respiratoire/antagonistes et inhibiteurs , Antinéoplasiques/pharmacologie , Souris , Lignée cellulaire tumorale , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Agents découplants/pharmacologie , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Tests d'activité antitumorale sur modèle de xénogreffe , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Rats , NADH dehydrogenase/métabolisme , NADH dehydrogenase/antagonistes et inhibiteurs
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...