Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5161, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431727

ABSTRACT

There is an increased risk of cerebrovascular accidents (CVA) in individuals with PHACES, yet the precise causes are not well understood. In this analysis, we aimed to examine the role of arteriopathy in PHACES syndrome as a potential contributor to CVA. We analyzed clinical and radiological data from 282 patients with suspected PHACES syndrome. We analyzed clinical features, including the presence of infantile hemangioma and radiological features based on magnetic resonance angiography or computed tomography angiography, in individuals with PHACES syndrome according to the Garzon criteria. To analyze intravascular blood flow, we conducted a simulation based on the Fluid-Structure Interaction (FSI) method, utilizing radiological data. The collected data underwent statistical analysis. Twenty patients with PHACES syndrome were included. CVAs were noted in 6 cases. Hypoplasia (p = 0.03), severe tortuosity (p < 0.01), absence of at least one main cerebral artery (p < 0.01), and presence of persistent arteries (p = 0.01) were associated with CVAs, with severe tortuosity being the strongest predictor. The in-silico analysis showed that the combination of hypoplasia and severe tortuosity resulted in a strongly thrombogenic environment. Severe tortuosity, combined with hypoplasia, is sufficient to create a hemodynamic environment conducive to thrombus formation and should be considered high-risk for cerebrovascular accidents (CVAs) in PHACES patients.


Subject(s)
Hemangioma , Stroke , Humans , Stroke/diagnostic imaging , Cerebral Arteries/pathology , Magnetic Resonance Angiography , Hemangioma/pathology , Tomography, X-Ray Computed
2.
Sci Rep ; 13(1): 17898, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857680

ABSTRACT

Smoking negatively affects B cell function and immunoglobulin levels, but it is unclear if this immune dysfunction contributes to the risk of severe COVID-19 in smokers. We evaluated binding IgM, IgA and IgG antibodies to spike and receptor binding domain antigens, and used a pseudovirus assay to quantify neutralization titers in a set of 27 patients with severe COVID-19. We found no significant differences between binding and neutralization antibody responses for people with a smoking history and people who never smoked. High plasma viral load, but not antibody titers, was linked to an increased risk of death. Humoral immune dysfunction was not a major driver of severe COVID-19 in smokers.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Smokers , Antibodies, Viral , Antibody Formation , Antibodies, Neutralizing , Immunoglobulin M
SELECTION OF CITATIONS
SEARCH DETAIL
...