Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 105(34): 12259-64, 2008 Aug 26.
Article in English | MEDLINE | ID: mdl-18713857

ABSTRACT

Here, we compare the distributions of main chain (Phi,Psi) angles (i.e., Ramachandran maps) of the 20 naturally occurring amino acids in three contexts: (i) molecular dynamics (MD) simulations of Gly-Gly-X-Gly-Gly pentapeptides in water at 298 K with exhaustive sampling, where X = the amino acid in question; (ii) 188 independent protein simulations in water at 298 K from our Dynameomics Project; and (iii) static crystal and NMR structures from the Protein Data Bank. The GGXGG peptide series is often used as a model of the unstructured denatured state of proteins. The sampling in the peptide MD simulations is neither random nor uniform. Instead, individual amino acids show preferences for particular conformations, but the peptide is dynamic, and interconversion between conformers is facile. For a given amino acid, the (Phi,Psi) distributions in the protein simulations and the Protein Data Bank are very similar and often distinct from those in the peptide simulations. Comparison between the peptide and protein simulations shows that packing constraints, solvation, and the tendency for particular amino acids to be used for specific structural motifs can overwhelm the "intrinsic propensities" of amino acids for particular (Phi,Psi) conformations. We also compare our helical propensities with experimental consensus values using the host-guest method, which appear to be determined largely by context and not necessarily the intrinsic conformational propensities of the guest residues. These simulations represent an improved coil library free from contextual effects to better model intrinsic conformational propensities and provide a detailed view of conformations making up the "random coil" state.


Subject(s)
Amino Acids/chemistry , Oligopeptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Computational Biology , Computer Simulation , Databases, Protein , Models, Molecular , Molecular Conformation , Protein Conformation , Protein Structure, Secondary , Water
2.
Protein Eng Des Sel ; 21(6): 353-68, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18411224

ABSTRACT

The goal of Dynameomics is to perform atomistic molecular dynamics (MD) simulations of representative proteins from all known folds in explicit water in their native state and along their thermal unfolding pathways. Here we present 188-fold representatives and their native state simulations and analyses. These 188 targets represent 67% of all the structures in the Protein Data Bank. The behavior of several specific targets is highlighted to illustrate general properties in the full dataset and to demonstrate the role of MD in understanding protein function and stability. As an example of what can be learned from mining the Dynameomics database, we identified a protein fold with heightened localized dynamics. In one member of this fold family, the motion affects the exposure of its phosphorylation site and acts as an entropy sink to offset another portion of the protein that is relatively immobile in order to present a consistent interface for protein docking. In another member of this family, a polymorphism in the highly mobile region leads to a host of disease phenotypes. We have constructed a web site to provide access to a novel hybrid relational/multidimensional database (described in the succeeding two papers) to view and interrogate simulations of the top 30 targets: http://www.dynameomics.org. The Dynameomics database, currently the largest collection of protein simulations and protein structures in the world, should also be useful for determining the rules governing protein folding and kinetic stability, which should aid in deciphering genomic information and for protein engineering and design.


Subject(s)
Proteins/chemistry , Phosphorylation , Protein Denaturation , Protein Folding , Water/chemistry
3.
Methods Enzymol ; 428: 373-96, 2007.
Article in English | MEDLINE | ID: mdl-17875430

ABSTRACT

Rarely is any solution simply solute and water. In vivo, solutes, such as proteins and nucleic acids, swim in a sea of water, salts, ions, small molecules, and lipids, not to mention other macromolecules. In vitro, virtually all solutions contain a mixture of aqueous solvents, or "cosolvents" [i.e., solvent(s) in addition to water], that can alter the dynamics, behavior, solubility, and stability of proteins and nucleic acids. We have developed models for a number of cosolvents, including the denaturant urea and the small chemical chaperone trimethylamine N-oxide (TMAO). This chapter examines the models for these two cosolvents in the context of experimental data. The direct and indirect effects of these molecules on water and protein are studied with molecular dynamics simulations. These observations and conclusions are drawn from simulations of these molecules in pure water and as a cosolvent for the protein chymotrypsin inhibitor 2. Urea-induced denaturation occurs initially through attack of the protein by water and hydration of hydrophobic protein moieties as a result of disruption of the hydrogen bonding network of water by urea. This indirect denaturing effect of urea is followed by more direct action as urea replaces some waters involved in the initial hydration of the hydrophobic core and subsequently binds to polar residues and the protein main chain to compete with the intraprotein hydrogen bonds. In the case of TMAO, we find that it encourages water-water interactions, thereby stabilizing the protein as a result of the increased penalty for the hydration of hydrophobic residues.


Subject(s)
Methylamines/pharmacology , Peptides/chemistry , Plant Proteins/chemistry , Proteins/chemistry , Solvents/chemistry , Urea/pharmacology , Computer Simulation , Hydrogen Bonding , Models, Molecular , Osmotic Pressure/drug effects , Protein Denaturation , Water/chemistry
4.
Proc Natl Acad Sci U S A ; 104(8): 2661-6, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-17307875

ABSTRACT

The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to approximately 0.4 kcal.mol(-1) in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Phi-values derived from Ala --> Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.


Subject(s)
Alanine/chemistry , Entropy , Glycine/chemistry , Protein Denaturation , Proteins/chemistry , Alanine/genetics , Glycine/genetics , Models, Biological , Mutation/genetics , Peptides/chemistry , Protein Conformation
5.
Biochem Biophys Res Commun ; 352(4): 843-9, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17156750

ABSTRACT

Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d(0)- and d(6)-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly, (k(H)/k(D))(obs) for d(3)-p-xylene oxidation ((k(H)/k(D))(obs)=6.04 and (k(H)/k(D))(obs)=5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k(H)/k(D))(obs) for d(3)-dimethylnaphthalene ((k(H)/k(D))(obs)=5.50 and (k(H)/k(D))(obs)=4.96, respectively). One explanation is that in some instances (k(H)/k(D))(obs) values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2E1/metabolism , Mixed Function Oxygenases/metabolism , Catalysis , Cytochrome P-450 CYP2A6 , Humans , Molecular Structure , Oxidation-Reduction , Substrate Specificity , Xylenes/metabolism
6.
Biochemistry ; 45(13): 4153-63, 2006 Apr 04.
Article in English | MEDLINE | ID: mdl-16566589

ABSTRACT

Molecular dynamics simulations can be used to reveal the detailed conformational behaviors of peptides and proteins. By comparing fragment and full-length protein simulations, we can investigate the role of each peptide segment in the folding process. Here, we take advantage of information regarding the helix formation process from our previous simulations of barnase and protein A as well as new simulations of four helical fragments from these proteins at three different temperatures, starting with both helical and extended structures. Segments with high helical propensity began the folding process by tethering the chain through side chain interactions involving either polar interactions, such as salt bridges, or hydrophobic staples. These tethers were frequently nonnative (i.e., not i --> i + 4 spacing) and provided a scaffold for other residues, thereby limiting the conformational search. The helical structure then propagated on both sides of the tether. Segments with low stability and propensity formed later in the folding process and utilized contacts with other portions of the protein when folding. These helices formed via a tertiary contact-assisted mechanism, primarily via hydrophobic contacts between residues distant in sequence. Thus, segments with different helical propensities appear to play different roles during protein folding. Furthermore, the active role of nonlocal side chains in helix formation highlights why we must move beyond simple hierarchical models of protein folding.


Subject(s)
Protein Folding , Protein Structure, Secondary/physiology , Protein Structure, Tertiary/physiology , Amino Acid Sequence , Bacterial Proteins , Computer Simulation , Peptide Fragments/chemistry , Ribonucleases/chemistry , Ribonucleases/genetics , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/genetics
7.
Proc Natl Acad Sci U S A ; 102(38): 13433-8, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-16157882

ABSTRACT

Several neurodegenerative diseases are linked to expanded repeats of glutamine residues, which lead to the formation of amyloid fibrils and neuronal death. The length of the repeats correlates with the onset of Huntington's disease, such that healthy individuals have <38 residues and individuals with >38 repeats exhibit symptoms. Because it is difficult to obtain atomic-resolution structural information for poly(l-glutamine) (polyQ) in aqueous solution experimentally, we performed molecular dynamics simulations to investigate the conformational behavior of this homopolymer. In simulations of 20-, 40-, and 80-mer polyQ, we observed the formation of the "alpha-extended chain" conformation, which is characterized by alternating residues in the alpha(L) and alpha(R) conformations to yield a sheet. The structural transition from disordered random-coil conformations to the alpha-extended chain conformation exhibits modest length and temperature dependence, in agreement with the experimental observation that aggregation depends on length and temperature. We propose that fibril formation in polyQ may occur through an alpha-sheet structure, which was proposed by Pauling and Corey. Also, we propose an atomic-resolution model of how the inhibitory peptide QBP1 (polyQ-binding peptide 1) may bind to polyQ in an alpha-extended chain conformation to inhibit fibril formation.


Subject(s)
Amyloid/chemistry , Huntington Disease , Models, Molecular , Peptides/chemistry , Animals , Humans , Protein Structure, Secondary
8.
Structure ; 12(10): 1847-63, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15458633

ABSTRACT

The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis.


Subject(s)
Amyloid/chemistry , Prealbumin/chemistry , Amyloidosis/pathology , Crystallography , Humans , Hydrogen-Ion Concentration , Protein Structure, Secondary , Temperature
9.
J Mol Biol ; 341(4): 1109-24, 2004 Aug 20.
Article in English | MEDLINE | ID: mdl-15328620

ABSTRACT

Proteins with ultra-fast folding/unfolding kinetics are excellent candidates for study by molecular dynamics. Here, we describe such simulations of a three helix bundle protein, the engrailed homeodomain (En-HD), which folds via the diffusion-collision model. The unfolding pathway of En-HD was characterized by seven simulations of the protein and 12 simulations of its helical fragments yielding over 1.1 micros of simulation time in water. Various conformational states along the unfolding pathway were identified. There is the compact native-like transition state, a U-shaped helical intermediate and an unfolded state with dynamic helical segments. Each of these states is in good agreement with experimental data. Examining these states as well as the transitions between them, we find the role of long-range tertiary contacts, specifically salt-bridges, important in the folding/unfolding pathway. In the folding direction, charged residues form long-range tertiary contacts before the hydrophobic core is formed. The formation of HII is assisted by a specific salt-bridge and by non-specific (fluctuating) tertiary contacts, which we call contact-assisted helix formation. Salt-bridges persist as the protein approaches the transition state, stabilizing HII until the hydrophobic core is formed. To complement this information, simulations of fragments of En-HD illustrate the helical propensities of the individual segments. By thermal denaturation, HII proved to be the least stable helix, unfolding in less than 450 ps at high temperature. We observed the low helical propensity of C-terminal residues from HIII in fragment simulations which, when compared to En-HD unfolding simulations, link the unraveling of HIII to the initial event that drives the unfolding of En-HD.


Subject(s)
Proteins/chemistry , Protein Folding , Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 101(32): 11622-7, 2004 Aug 10.
Article in English | MEDLINE | ID: mdl-15280548

ABSTRACT

Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of alpha-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. In all beta-sheet proteins, transthyretin and beta(2)-microglobulin, alpha-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, alpha-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of alpha-pleated sheet structure may be a common conformational transition in amyloidosis.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Protein Structure, Secondary , Computer Simulation , Dimerization , Humans , Hydrogen-Ion Concentration , Models, Molecular , Muramidase/chemistry , Prealbumin/chemistry , Protein Conformation , Protein Denaturation , beta 2-Microglobulin/chemistry
11.
Proc Natl Acad Sci U S A ; 100(26): 15486-91, 2003 Dec 23.
Article in English | MEDLINE | ID: mdl-14671331

ABSTRACT

Here, we describe the folding/unfolding kinetics of alpha3D, a small designed three-helix bundle. Both IR temperature jump and ultrafast fluorescence mixing methods reveal a single-exponential process consistent with a minimal folding time of 3.2 +/- 1.2 micros (at approximately 50 degrees C), indicating that a protein can fold on the 1- to 5-micros time scale. Furthermore, the single-exponential nature of the relaxation indicates that the prefactor for transition state (TS)-folding models is probably >or=1 (micros)-1 for a protein of this size and topology. Molecular dynamics simulations and IR spectroscopy provide a molecular rationale for the rapid, single-exponential folding of this protein. alpha3D shows a significant bias toward local helical structure in the thermally denatured state. The molecular dynamics-simulated TS ensemble is highly heterogeneous and dynamic, allowing access to the TS via multiple pathways.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Kinetics , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Folding , Thermodynamics , Time Factors , Urea
12.
Protein Sci ; 12(6): 1145-57, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12761385

ABSTRACT

The conformational equilibrium between 3(10)- and alpha-helical structure has been studied via high-resolution NMR spectroscopy by Millhauser and coworkers using the MW peptide Ac-AMAAKAWAAKA AAARA-NH2. Their 750-MHz nuclear Overhauser effect spectroscopy (NOESY) spectra were interpreted to reflect appreciable populations of 3(10)-helix throughout the peptide, with the greatest contribution at the N and C termini. The presence of simultaneous alphaN(i,i + 2) and alphaN(i,i + 4) NOE cross-peaks was proposed to represent conformational averaging between 3(10)- and alpha-helical structures. In this study, we describe 25-nsec molecular dynamics simulations of the MW peptide at 298 K, using both an 8 A and a 10 A force-shifted nonbonded cutoff. The ensemble averages of both simulations are in reasonable agreement with the experimental helical content from circular dichroism (CD), the (3)J(HNalpha) coupling constants, and the 57 observed NOEs. Analysis of the structures from both simulations revealed very little formation of contiguous i --> i + 3 hydrogen bonds (3(10)-helix); however, there was a large population of bifurcated i --> i + 3 and i --> i + 4 alpha-helical hydrogen bonds. In addition, both simulations contained considerable populations of pi-helix (i --> i + 5 hydrogen bonds). Individual turns formed over residues 1-9, which we predict contribute to the intensities of the experimentally observed alphaN(i,i + 2) NOEs. Here we show how sampling of both folded and unfolded structures can provide a structural framework for deconvolution of the conformational contributions to experimental ensemble averages.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Biophysical Phenomena , Biophysics , Circular Dichroism , Computer Simulation , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Models, Theoretical , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Structure, Secondary
13.
Biophys Chem ; 100(1-3): 221-37, 2003.
Article in English | MEDLINE | ID: mdl-12646368

ABSTRACT

The structure and dynamics of the water hydrating peptides and proteins are examined here at atomic resolution via molecular dynamics simulations. Detailed solvation density and residence time data for all 20 L-amino acids in an end-capped AXA tripeptide motif are presented. In addition, the solvation of the protein chymotrypsin inhibitor 2 is investigated as a point of comparison. Residues on the surface of proteins are not isolated; they interact both locally and non-locally in sequence space, and comparison of the solvation properties of each amino acid in both the peptide and protein allow us to distinguish inherent solvation properties from context-dependent perturbations due to neighboring residues. This work moves beyond traditional radial distribution functions and presents graphical representations of preferential solvation and orientation of water by side chains and the main chain. The combination of 0.3 micros of simulation data improves the statistical sampling over previous studies and reveals the significance of bridging water molecules that stabilize and mediate side chain-side chain, side chain-main chain and main chain-main chain interactions at the solvation interface.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Algorithms , Diffusion , Models, Chemical , Models, Molecular , Oligopeptides/chemistry , Oxygen/chemistry , Plant Proteins , Protein Conformation , Solubility
14.
Nature ; 421(6925): 863-7, 2003 Feb 20.
Article in English | MEDLINE | ID: mdl-12594518

ABSTRACT

Combining experimental and simulation data to describe all of the structures and the pathways involved in folding a protein is problematical. Transition states can be mapped experimentally by phi values, but the denatured state is very difficult to analyse under conditions that favour folding. Also computer simulation at atomic resolution is currently limited to about a microsecond or less. Ultrafast-folding proteins fold and unfold on timescales accessible by both approaches, so here we study the folding pathway of the three-helix bundle protein Engrailed homeodomain. Experimentally, the protein collapses in a microsecond to give an intermediate with much native alpha-helical secondary structure, which is the major component of the denatured state under conditions that favour folding. A mutant protein shows this state to be compact and contain dynamic, native-like helices with unstructured side chains. In the transition state between this and the native state, the structure of the helices is nearly fully formed and their docking is in progress, approximating to a classical diffusion-collision model. Molecular dynamics simulations give rate constants and structural details highly consistent with experiment, thereby completing the description of folding at atomic resolution.


Subject(s)
Drosophila melanogaster/chemistry , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Protein Folding , Transcription Factors/chemistry , Transcription Factors/metabolism , Animals , Computer Simulation , Diffusion , Drosophila Proteins , Hot Temperature , Kinetics , Lasers , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Denaturation , Protein Renaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Time Factors , X-Ray Diffraction
15.
Protein Sci ; 12(3): 520-31, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12592022

ABSTRACT

We examined the hydration of amides of alpha(3)D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy ( approximately 50%-70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I' band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I' bands of the buried (13)C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4-7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 3(10)/alpha/pi-helical conformation.


Subject(s)
Amides/chemistry , Proteins/chemistry , Hydrogen Bonding , Models, Chemical , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding , Protons , Spectrophotometry, Infrared
16.
Structure ; 10(7): 989-98, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12121654

ABSTRACT

To investigate whether swapping native turns of a globular protein with an elastin-based turn sequence (VPGVG) can increase its thermostability, we have performed molecular dynamics simulations of wild-type chymotrypsin inhibitor 2 (CI2) and variants containing elastin-based turns at 10 degrees C and 40 degrees C. Wild-type CI2 is more stable at 10 degrees C, while both of the variant forms are more stable at 40 degrees C. Detailed analyses indicate that the elastin-based turns do indeed contribute to the inverse temperature behavior of the modified proteins. Therefore, swapping a wild-type turn sequence with an elastin-based turn provides a novel way to both improve stability of target proteins at body temperature and to possibly introduce a temperature-sensitive switch.


Subject(s)
Elastin/chemistry , Peptides/chemistry , Models, Molecular , Plant Proteins , Protein Structure, Secondary , Temperature
17.
J Mol Biol ; 319(1): 229-42, 2002 May 24.
Article in English | MEDLINE | ID: mdl-12051948

ABSTRACT

Previous molecular dynamics (MD) simulations of the thermal denaturation of chymotrypsin inhibitor 2 (CI2) have provided atomic-resolution models of the transition state ensemble that is well supported by experimental studies. Here, we use simulations to further investigate the energy landscape around the transition state region. Nine structures within approximately 35 ps and 3 A C(alpha) RMSD of the transition state ensemble identified in a previous 498 K thermal denaturation simulation were quenched under the quasi-native conditions of 335 K and neutral pH. All of the structures underwent hydrophobically driven collapse in response to the drop in temperature. Structures less denatured than the transition state became structurally more native-like, while structures that were more denatured than the transition state tended to show additional loss of native structure. The structures in the immediate region of the transition state fluctuated between becoming more and less native-like. All of the starting structures had the same native-like topology and were quite similar (within 3.5 A C(alpha) RMSD). That the structures all shared native-like topology, yet diverged into either more or less native-like structures depending on which side of the transition state they occupied on the unfolding trajectory, indicates that topology alone does not dictate protein folding. Instead, our results suggest that a detailed interplay of packing interactions and interactions with water determine whether a partially denatured protein will become more native-like under refolding conditions.


Subject(s)
Protein Folding , Protein Precursors/chemistry , Protein Precursors/metabolism , Animals , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Renaturation , Swine , Temperature , Thermodynamics , Time Factors , Tryptophan/chemistry , Water/chemistry
18.
Philos Trans A Math Phys Eng Sci ; 360(1795): 1165-78, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12804272

ABSTRACT

As computer power increases, so too does the range of interesting biomolecular phenomena and properties that can be simulated. It is now possible to simulate complicated protein conformational changes at ambient or physiological temperatures. In this regard, we are attempting to map the conformational transitions of the normal, cellular prion protein (PrP(C)) to its infectious scrapie isoform (PrP(Sc)), which causes neurodegenerative diseases in many mammals. These two forms have identical sequences and are conformational isomers, with heightened formation of beta-sheet structure in the scrapie form. Conversion can be triggered by lowering the pH, but thus far it has been impossible to characterize the conformational change at high resolution using experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed molecular-dynamics simulations of hamster, human and bovine forms of the prion protein in water at neutral and low pH. In all cases the core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native beta-sheet and by addition of a portion of the N-terminus to widen the sheet by another 2-3 strands.


Subject(s)
Computer Simulation , Models, Molecular , Prions/chemistry , Protein Conformation , Animals , Cattle , Cricetinae , Humans , Hydrogen-Ion Concentration , Nerve Tissue Proteins/chemistry , PrPC Proteins/chemistry , PrPSc Proteins/chemistry , Prions/classification , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL