Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(4): 976-987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491273

ABSTRACT

In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-ß-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.


Subject(s)
Mycobacterium tuberculosis , Polyisoprenyl Phosphates , Mycobacterium tuberculosis/genetics , Phosphoribosyl Pyrophosphate/metabolism , Antitubercular Agents/metabolism , Cell Wall/metabolism
3.
Nat Commun ; 14(1): 3828, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380634

ABSTRACT

Mycobacterium tuberculosis is one of the global leading causes of death due to a single infectious agent. Pretomanid and delamanid are new antitubercular agents that have progressed through the drug discovery pipeline. These compounds are bicyclic nitroimidazoles that act as pro-drugs, requiring activation by a mycobacterial enzyme; however, the precise mechanisms of action of the active metabolite(s) are unclear. Here, we identify a molecular target of activated pretomanid and delamanid: the DprE2 subunit of decaprenylphosphoribose-2'-epimerase, an enzyme required for the synthesis of cell wall arabinogalactan. We also provide evidence for an NAD-adduct as the active metabolite of pretomanid. Our results highlight DprE2 as a potential antimycobacterial target and provide a foundation for future exploration into the active metabolites and clinical development of pretomanid and delamanid.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Nitroimidazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Molecular Targeted Therapy , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Cell Wall/metabolism , Drug Resistance , Prodrugs/chemistry , Prodrugs/metabolism , Spectrophotometry , NAD/metabolism , Kinetics
4.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252995

ABSTRACT

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Subject(s)
Mycobacterium tuberculosis , Humans , Galactans , Pentosyltransferases/genetics
5.
Front Microbiol ; 14: 1112491, 2023.
Article in English | MEDLINE | ID: mdl-36778873

ABSTRACT

Mycobacterium tuberculosis is a deadly pathogen, currently the leading cause of death worldwide from a single infectious agent through tuberculosis infections. If the End TB 2030 strategy is to be achieved, additional drugs need to be identified and made available to supplement the current treatment regimen. In addition, drug resistance is a growing issue, leading to significantly lower treatment success rates, necessitating further drug development. Vanoxerine (GBR12909), a dopamine re-uptake inhibitor, was recently identified as having anti-mycobacterial activity during a drug repurposing screening effort. However, its effects on mycobacteria were not well characterized. Herein, we report vanoxerine as a disruptor of the membrane electric potential, inhibiting mycobacterial efflux and growth. Vanoxerine had an undetectable level of resistance, highlighting the lack of a protein target. This study suggests a mechanism of action for vanoxerine, which will allow for its continued development or use as a tool compound.

6.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748627

ABSTRACT

DprE2 is an essential enzyme in the synthesis of decaprenylphosphoryl-ß-d-arabinofuranose (DPA) and subsequently arabinogalactan, and is a significant new drug target for M. tuberculosis. Two compounds from the GSK-177 box set, GSK301A and GSK032A, were identified through Mt-DprE2-target overexpression studies. The Mt-DprE1-DprE2 complex was co-purified and a new in vitro DprE2 assay developed, based on the oxidation of the reduced nicotinamide adenine dinucleotide cofactor of DprE2 (NADH/NADPH). The Mt-DprE1-DprE2 complex showed interesting kinetics in both the DprE1 resazurin-based assay, where Mt-DprE2 was found to enhance Mt-DprE1 activity and reduce substrate inhibition; and also in the DprE2 assay, which similarly exhibited substrate inhibition and a difference in kinetics of the two potential cofactors, NADH and NADPH. Although, no inhibition was observed in the DprE2 assay by the two GSK set compounds, spontaneous mutant generation indicated a possible explanation in the form of a pro-drug activation pathway, involving fgd1 and fbiC.


Subject(s)
Mycobacterium tuberculosis , Oxidoreductases/genetics , Oxidoreductases/metabolism , NAD/metabolism , NADP/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Bacterial Proteins/chemistry
7.
Eur J Med Chem ; 231: 114145, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35101648

ABSTRACT

A series of thiophene-benzenesulfonamide derivatives was designed and synthesized by exploring the structure-activity relationship of lead compounds 2,3-disubstituted thiophenes 25a and 297F as antituberculosis agents, which displayed potent antimycobacterial activity against drug-susceptible and clinically isolated drug-resistant tuberculosis. In particular, compound 17b, which had improved activity (minimum inhibitory concentration of 0.023 µg/mL) compared with the lead compounds, displayed good intracellular antimycobacterial activity in macrophages with a reduction of 1.29 log10 CFU. A druggability evaluation indicated that compound 17b had favorable hepatocyte stability, low cytotoxicity, and low hERG channel inhibition. Moreover, compound 17b exhibited modest in vivo efficacy in an acute mouse model of tuberculosis. In addition, the molecular docking study elucidated the binding mode of compound 17b in the active site of DprE1. Therefore, compound 17b may be a promising antituberculosis lead for further research.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides , Thiophenes/chemistry , Thiophenes/pharmacology , Thiophenes/therapeutic use , Benzenesulfonamides
8.
Cell Surf ; 7: 100068, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34888432

ABSTRACT

The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of TB research. There are multiple different experimental approaches that can be employed in the discovery of anti-TB agents. Notably, inhibitors of MmpL3 are numerous and structurally diverse in Mtb and have been discovered through the generation of spontaneous resistant mutants and subsequent whole genome sequencing studies. However, this approach is not always reliable and can lead to incorrect target assignment and requires orthogonal confirmatory approaches. In fact, many of these inhibitors have also been shown to act as multi-target agents, with secondary targets in Mtb, as well as in other non-MmpL3-containing pathogens. Herein, we have investigated further the cellular targets of the MmpL3-inhibitor BM212 and a number of BM212 analogues. To determine the alternative targets of BM212, which may have been masked by MmpL3 mutations, we have applied a combination of chemo-proteomic profiling using bead-immobilised BM212 derivatives and protein extracts, along with whole-cell and biochemical assays. The study identified EthR2 (Rv0078) as a protein that binds BM212 analogues. We further demonstrated binding of BM212 to EthR2 through an in vitro tryptophan fluorescence assay, which showed significant quenching of tryptophan fluorescence upon addition of BM212. Our studies have demonstrated the value of revisiting drugs with ambiguous targets, such as MmpL3, in an attempt to find alternative targets and the study of off-target effects to understand more precisely target engagement of new hits emerging from drug screening campaigns.

9.
Tuberculosis (Edinb) ; 129: 102104, 2021 07.
Article in English | MEDLINE | ID: mdl-34214859

ABSTRACT

FNDR-20081 [4-{4-[5-(4-Isopropyl-phenyl)- [1,2,4]oxadiazol-3-ylmethyl]-piperazin-1-yl}-7-pyridin-3-yl-quinoline] is a novel, first in class anti-tubercular pre-clinical candidate against sensitive and drug-resistant Mycobacterium tuberculosis (Mtb). In-vitro combination studies of FNDR-20081 with first- and second-line drugs exhibited no antagonism, suggesting its compatibility for developing new combination-regimens. FNDR-20081, which is non-toxic with no CYP3A4 liability, demonstrated exposure-dependent killing of replicating-Mtb, as well as the non-replicating-Mtb, and efficacy in a mouse model of infection. Whole genome sequencing (WGS) of FNDR-20081 resistant mutants revealed the identification of pleotropic targets: marR (Rv0678), a regulator of MmpL5, a transporter/efflux pump mechanism for drug resistance; and Rv3683, a putative metalloprotease potentially involved in peptidoglycan biosynthesis. In summary, FNDR-20081 is a promising first in class compound with the potential to form a new combination regimen for MDR-TB treatment.


Subject(s)
Antitubercular Agents/pharmacology , Quinolines/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy , Animals , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis , THP-1 Cells
10.
J Med Chem ; 64(9): 6241-6261, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33852302

ABSTRACT

In this study, we report the design and synthesis of a series of novel thiophene-arylamide compounds derived from the noncovalent decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) inhibitor TCA1 through a structure-based scaffold hopping strategy. Systematic optimization of the two side chains flanking the thiophene core led to new lead compounds bearing a thiophene-arylamide scaffold with potent antimycobacterial activity and low cytotoxicity. Compounds 23j, 24f, 25a, and 25b exhibited potent in vitro activity against both drug-susceptible (minimum inhibitory concentration (MIC) = 0.02-0.12 µg/mL) and drug-resistant (MIC = 0.031-0.24 µg/mL) tuberculosis strains while retaining potent DprE1 inhibition (half maximal inhibitory concentration (IC50) = 0.2-0.9 µg/mL) and good intracellular antimycobacterial activity. In addition, these compounds showed good hepatocyte stability and low inhibition of the human ether-à-go-go related gene (hERG) channel. The representative compound 25a with acceptable pharmacokinetic property demonstrated significant bactericidal activity in an acute mouse model of tuberculosis. Moreover, the molecular docking study of template compound 23j provides new insight into the discovery of novel antitubercular agents targeting DprE1.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Amides/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Design , Thiophenes/chemistry , Thiophenes/pharmacology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Humans , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Protein Conformation , Structure-Activity Relationship , Thiophenes/metabolism , Thiophenes/pharmacokinetics , Tissue Distribution
11.
Cell Surf ; 6: 100044, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32995684

ABSTRACT

Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.

12.
Protein Cell ; 11(7): 505-517, 2020 07.
Article in English | MEDLINE | ID: mdl-32363534

ABSTRACT

Inhibition of Mycobacterium tuberculosis (Mtb) cell wall assembly is an established strategy for anti-TB chemotherapy. Arabinosyltransferase EmbB, which catalyzes the transfer of arabinose from the donor decaprenyl-phosphate-arabinose (DPA) to its arabinosyl acceptor is an essential enzyme for Mtb cell wall synthesis. Analysis of drug resistance mutations suggests that EmbB is the main target of the front-line anti-TB drug, ethambutol. Herein, we report the cryo-EM structures of Mycobacterium smegmatis EmbB in its "resting state" and DPA-bound "active state". EmbB is a fifteen-transmembrane-spanning protein, assembled as a dimer. Each protomer has an associated acyl-carrier-protein (AcpM) on their cytoplasmic surface. Conformational changes upon DPA binding indicate an asymmetric movement within the EmbB dimer during catalysis. Functional studies have identified critical residues in substrate recognition and catalysis, and demonstrated that ethambutol inhibits transferase activity of EmbB by competing with DPA. The structures represent the first step directed towards a rational approach for anti-TB drug discovery.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Mycobacterium smegmatis/enzymology , Pentosyltransferases/chemistry , Pentosyltransferases/ultrastructure , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Ethambutol/pharmacology , Pentosyltransferases/antagonists & inhibitors , Pentosyltransferases/metabolism
13.
Biochem J ; 477(10): 1983-2006, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32470138

ABSTRACT

Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.


Subject(s)
Cell Wall , Mycobacterium tuberculosis , Mycolic Acids/metabolism , Tuberculosis/microbiology , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Cell Wall/immunology , Host Microbial Interactions , Immune System , Lipid Metabolism , Lipids/biosynthesis , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy
14.
Science ; 368(6496): 1211-1219, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32327601

ABSTRACT

The arabinosyltransferases EmbA, EmbB, and EmbC are involved in Mycobacterium tuberculosis cell wall synthesis and are recognized as targets for the anti-tuberculosis drug ethambutol. In this study, we determined cryo-electron microscopy and x-ray crystal structures of mycobacterial EmbA-EmbB and EmbC-EmbC complexes in the presence of their glycosyl donor and acceptor substrates and with ethambutol. These structures show how the donor and acceptor substrates bind in the active site and how ethambutol inhibits arabinosyltransferases by binding to the same site as both substrates in EmbB and EmbC. Most drug-resistant mutations are located near the ethambutol binding site. Collectively, our work provides a structural basis for understanding the biochemical function and inhibition of arabinosyltransferases and the development of new anti-tuberculosis agents.


Subject(s)
Antitubercular Agents/chemistry , Cell Wall/enzymology , Ethambutol/chemistry , Mycobacterium tuberculosis/enzymology , Pentosyltransferases/chemistry , Cryoelectron Microscopy , Drug Resistance, Multiple, Bacterial , Protein Conformation
15.
Eur J Med Chem ; 160: 157-170, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30336450

ABSTRACT

In this study, three novel series of benzoxazinone, benzothiopyranone and benzopyranone derivatives were designed through scaffold morphing from benzothiazinones to target DprE1. All compounds were evaluated for their in vitro activities against Mycobacterium tuberculosis and cytotoxicity against Vero cell line. Among these three series, the benzothiopyranone series displayed excellent antimycobacterial activity and low cytotoxicity. In particular, compound 6b exhibited potent in vitro activity against both drug-susceptible and drug-resistant tuberculosis clinical strains with MICs <0.016 µg/mL. In addition, compound 6b demonstrated excellent ADME/T and PK properties and potent in vivo efficacy with bactericidal activity in an acute mouse model of tuberculosis. The antituberculosis effect of compound 6b is most likely attributed to its excellent anti-DprE1 activity. As such, compound 6b is under evaluation as a potential clinical candidate for treatment of tuberculosis. The current study provided new insight into the structural and pharmacological requirements for DprE1 inhibitors as potent antitubercular agents.


Subject(s)
Antitubercular Agents/pharmacology , Coumarins/pharmacology , Mycobacterium tuberculosis/drug effects , Thiazines/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Chlorocebus aethiops , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Female , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Microsomes, Liver/chemistry , Molecular Structure , Structure-Activity Relationship , Thiazines/chemistry , Vero Cells
16.
Angew Chem Int Ed Engl ; 56(42): 13011-13015, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28815830

ABSTRACT

Mycobacterium tuberculosis (Mtb) DprE1, an essential isomerase for the biosynthesis of the mycobacterial cell wall, is a validated target for tuberculosis (TB) drug development. Here we report the X-ray crystal structures of DprE1 and the DprE1 resistant mutant (Y314C) in complexes with TCA1 derivatives to elucidate the molecular basis of their inhibitory activities and an unconventional resistance mechanism, which enabled us to optimize the potency of the analogs. The selected lead compound showed excellent in vitro and in vivo activities, and low risk of toxicity profile except for the inhibition of CYP2C9. A crystal structure of CYP2C9 in complex with a TCA1 analog revealed the similar interaction patterns to the DprE1-TCA1 complex. Guided by the structures, an optimized molecule was generated with differential inhibitory activities against DprE1 and CYP2C9, which provides insights for development of a clinical candidate to treat TB.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Cytochrome P-450 CYP2C9/metabolism , Mycobacterium tuberculosis/metabolism , Thiophenes/chemistry , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 CYP2C9/chemistry , Drug Resistance, Bacterial/drug effects , Mice , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Thiophenes/pharmacology , Thiophenes/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/veterinary
17.
ACS Infect Dis ; 1(12): 615-26, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-27623058

ABSTRACT

We have targeted the Mycobacterium tuberculosis decaprenylphosphoryl-ß-d-ribose oxidase (Mt-DprE1) for potential chemotherapeutic intervention of tuberculosis. A multicopy suppression strategy that overexpressed Mt-DprE1 in M. bovis BCG was used to profile the publically available GlaxoSmithKline antimycobacterial compound set, and one compound (GSK710) was identified that showed an 8-fold higher minimum inhibitory concentration relative to the control strain. Analogues of GSK710 show a clear relationship between whole cell potency and in vitro activity using an enzymatic assay employing recombinant Mt-DprE1, with binding affinity measured by fluorescence quenching of the flavin cofactor of the enzyme. M. bovis BCG spontaneous resistant mutants to GSK710 and a closely related analogue were isolated and sequencing of ten such mutants revealed a single point mutation at two sites, E221Q or G248S within DprE1, providing further evidence that DprE1 is the main target of these compounds. Finally, time-lapse microscopy experiments showed that exposure of M. tuberculosis to a compound of this series arrests bacterial growth rapidly followed by a slower cytolysis phase.

18.
Proc Natl Acad Sci U S A ; 110(27): E2510-7, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776209

ABSTRACT

A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-ß-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.


Subject(s)
Antitubercular Agents/pharmacology , Benzothiazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Thiophenes/pharmacology , Tuberculosis, Pulmonary/drug therapy , Alcohol Oxidoreductases , Amino Acid Sequence , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Drug Resistance, Bacterial , Female , Genes, Bacterial , High-Throughput Screening Assays , Isoniazid/administration & dosage , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Rifampin/administration & dosage , Thiophenes/administration & dosage , Thiophenes/chemistry , Tuberculosis, Pulmonary/microbiology
19.
PLoS One ; 7(9): e46225, 2012.
Article in English | MEDLINE | ID: mdl-23029442

ABSTRACT

BACKGROUND: Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. RESULTS: In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. CONCLUSION: Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.


Subject(s)
Acyltransferases/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/genetics , Lipoproteins/metabolism , Operon , Protein Processing, Post-Translational , Acylation , Acyltransferases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Chromatography, Liquid , Corynebacterium glutamicum/enzymology , Escherichia coli/genetics , Gene Expression , Glycosylation , Isoenzymes/genetics , Isoenzymes/metabolism , Lipoproteins/genetics , Molecular Sequence Data , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization
20.
Proc Natl Acad Sci U S A ; 109(28): 11354-9, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22733761

ABSTRACT

Resistance against currently used antitubercular therapeutics increasingly undermines efforts to contain the worldwide tuberculosis (TB) epidemic. Recently, benzothiazinone (BTZ) inhibitors have shown nanomolar potency against both drug-susceptible and multidrug-resistant strains of the tubercle bacillus. However, their proposed mode of action is lacking structural evidence. We report here the crystal structure of the BTZ target, FAD-containing oxidoreductase Mycobacterium tuberculosis DprE1, which is essential for viability. Different crystal forms of ligand-free DprE1 reveal considerable levels of structural flexibility of two surface loops that seem to govern accessibility of the active site. Structures of complexes with the BTZ-derived nitroso derivative CT325 reveal the mode of inhibitor binding, which includes a covalent link to conserved Cys387, and reveal a trifluoromethyl group as a second key determinant of interaction with the enzyme. Surprisingly, we find that a noncovalent complex was formed between DprE1 and CT319, which is structurally identical to CT325 except for an inert nitro group replacing the reactive nitroso group. This demonstrates that binding of BTZ-class inhibitors to DprE1 is not strictly dependent on formation of the covalent link to Cys387. On the basis of the structural and activity data, we propose that the complex of DrpE1 bound to CT325 is a representative of the BTZ-target complex. These results mark a significant step forward in the characterization of a key TB drug target.


Subject(s)
Benzamides/pharmacology , Mycobacterium tuberculosis/metabolism , Oxidoreductases/chemistry , Anti-Bacterial Agents/pharmacology , Arabinose/chemistry , Catalytic Domain , Cell Wall/metabolism , Chaperonins/metabolism , Crystallography, X-Ray/methods , Drug Resistance, Multiple , Enzyme Inhibitors/pharmacology , Escherichia coli/metabolism , Ligands , Models, Chemical , Models, Molecular , Molecular Conformation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL