Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355802

ABSTRACT

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Subject(s)
DNA Transposable Elements , Introns , RNA Precursors , RNA Splicing , RNA, Messenger , Animals , Humans , Male , Mice , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Exons/genetics , Genome/genetics , Introns/genetics , Organ Specificity/genetics , Piwi-Interacting RNA/genetics , Piwi-Interacting RNA/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatids/cytology , Spermatids/metabolism , RNA Splicing/genetics , Testis , Meiosis
2.
Clin Chem ; 70(1): 250-260, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37624932

ABSTRACT

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Subject(s)
Brain Neoplasms , Cell-Free Nucleic Acids , Nanopore Sequencing , Humans , Cell-Free Nucleic Acids/genetics , DNA Copy Number Variations , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Mutation
3.
Blood ; 143(14): 1391-1398, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38153913

ABSTRACT

ABSTRACT: Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Humans , Middle Aged , Young Adult , Acute Disease , Chromosome Deletion , Fusion Proteins, bcr-abl/genetics , Genomics , In Situ Hybridization, Fluorescence , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
4.
BMC Med Genomics ; 16(1): 257, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872581

ABSTRACT

BACKGROUND: Bisulfite sequencing has long been considered the gold standard for measuring DNA methylation at single CpG resolution. However, in recent years several new approaches like nanopore sequencing have been developed due to hints for a partial error-proneness of bisulfite sequencing. Since these errors were shown to be sequence-specific, we aimed to verify the methylation data of a particular region of the TRPA1 promoter from our previous studies obtained by bisulfite sequencing. METHODS: We compared methylation rates determined by direct bisulfite sequencing and nanopore sequencing following Cas9-mediated PCR-free enrichment. RESULTS: We could show that CpG methylation levels above 20% corroborate well with our previous data. Within the range between 0 and 20% methylation, however, Sanger sequencing data have to be interpreted cautiously, at least in the investigated region of interest (TRPA1 promotor region). CONCLUSION: Based on the investigation of the TRPA1- region as an example, the present work can help in choosing the right method out of the two current main approaches for methylation analysis for different individual settings regarding many factors like cohort size, costs and prerequisites that should be fulfilled for each method. All in all, both methods have their raison d'être. Furthermore, the present paper contains and illustrates some important basic information and explanation of how guide RNAs should be located for an optimal outcome in Cas9 mediated PCR free target enrichment.


Subject(s)
Nanopore Sequencing , Humans , CpG Islands , DNA Methylation , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Sulfites , TRPA1 Cation Channel/genetics
5.
Stem Cell Res ; 71: 103143, 2023 09.
Article in English | MEDLINE | ID: mdl-37343429

ABSTRACT

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by loss of paternal expression of imprinted genes on chromosome 15q11-q13. We established a human induced pluripotent stem cell line (hiPSC), ZIPi021-A, from fibroblasts of a 4-year-old female PWS patient with the subtype of maternal uniparental disomy (mUPD). The generated hiPSC line was transgene-free, expressed pluripotency markers and showed the ability to differentiate into all three germ layers in vitro. The ZIPi021-A hiPSC line could be used as a cellular model for PWS in humans.


Subject(s)
Induced Pluripotent Stem Cells , Neurodevelopmental Disorders , Prader-Willi Syndrome , Female , Humans , Child, Preschool , Prader-Willi Syndrome/genetics , Uniparental Disomy/genetics , Induced Pluripotent Stem Cells/metabolism , Fibroblasts/metabolism , Chromosomes, Human, Pair 15/genetics
6.
Nat Cell Biol ; 25(4): 579-591, 2023 04.
Article in English | MEDLINE | ID: mdl-37024684

ABSTRACT

DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.


Subject(s)
Epigenesis, Genetic , Epigenome , Animals , Mice , Female , Pregnancy , Epigenome/genetics , Placenta/metabolism , DNA Methylation , Polycomb-Group Proteins/genetics , DNA/metabolism , Mammals/metabolism
7.
Nat Cell Biol ; 24(6): 981-995, 2022 06.
Article in English | MEDLINE | ID: mdl-35697781

ABSTRACT

Cerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity despite the tremendous upsurge in derivation methods, suggesting inadequate patterning of early neural stem cells (NSCs). Here we show that a short and early Dual SMAD and WNT inhibition course is necessary and sufficient to establish robust and lasting cortical organoid NSC identity, efficiently suppressing non-cortical NSC fates, while other widely used methods are inconsistent in their cortical NSC-specification capacity. Accordingly, this method selectively enriches for outer radial glia NSCs, which cyto-architecturally demarcate well-defined outer sub-ventricular-like regions propagating from superiorly radially organized, apical cortical rosette NSCs. Finally, this method culminates in the emergence of molecularly distinct deep and upper cortical layer neurons, and reliably uncovers cortex-specific microcephaly defects. Thus, a short SMAD and WNT inhibition is critical for establishing a rich cortical cell repertoire that enables mirroring of fundamental molecular and cyto-architectural features of cortical development and meaningful disease modelling.


Subject(s)
Neural Stem Cells , Organoids , Cell Differentiation , Cerebral Cortex , Ependymoglial Cells , Humans , Neurogenesis , Neurons
8.
Nat Struct Mol Biol ; 28(7): 594-603, 2021 07.
Article in English | MEDLINE | ID: mdl-34140676

ABSTRACT

DNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , DNA Transposable Elements/genetics , Embryonic Development/genetics , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cells, Cultured , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Gene Knockout Techniques , Genome/genetics , Histones/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Tripartite Motif-Containing Protein 28/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Whole Genome Sequencing , DNA Methyltransferase 3B
9.
Cell Biol Toxicol ; 37(2): 229-243, 2021 04.
Article in English | MEDLINE | ID: mdl-32564278

ABSTRACT

The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. Graphical abstract •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells.


Subject(s)
Embryonic Development , High-Throughput Screening Assays , Pluripotent Stem Cells/metabolism , Reproduction , Small Molecule Libraries/pharmacology , Toxicity Tests , Adenosine Triphosphate/pharmacology , Animals , Automation , Biological Assay , Cell Death/drug effects , Cell Survival/drug effects , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Embryonic Development/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NIH 3T3 Cells , Pluripotent Stem Cells/drug effects , Reproduction/drug effects
10.
Nat Genet ; 52(8): 819-827, 2020 08.
Article in English | MEDLINE | ID: mdl-32514123

ABSTRACT

Mammalian cells stably maintain high levels of DNA methylation despite expressing both positive (DNMT3A/B) and negative (TET1-3) regulators. Here, we analyzed the independent and combined effects of these regulators on the DNA methylation landscape using a panel of knockout human embryonic stem cell (ESC) lines. The greatest impact on global methylation levels was observed in DNMT3-deficient cells, including reproducible focal demethylation at thousands of normally methylated loci. Demethylation depends on TET expression and occurs only when both DNMT3s are absent. Dynamic loci are enriched for hydroxymethylcytosine and overlap with subsets of putative somatic enhancers that are methylated in ESCs and can be activated upon differentiation. We observe similar dynamics in mouse ESCs that were less frequent in epiblast stem cells (EpiSCs) and scarce in somatic tissues, suggesting a conserved pluripotency-linked mechanism. Taken together, our data reveal tightly regulated competition between DNMT3s and TETs at thousands of somatic regulatory sequences within pluripotent cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Mixed Function Oxygenases/genetics , Pluripotent Stem Cells/physiology , Proto-Oncogene Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Line , DNA Methyltransferase 3A , Embryonic Stem Cells/physiology , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Germ Layers/physiology , Humans , Mice , Mice, Knockout
11.
Nat Biotechnol ; 37(12): 1478-1481, 2019 12.
Article in English | MEDLINE | ID: mdl-31740840

ABSTRACT

Expansions of short tandem repeats are genetic variants that have been implicated in several neuropsychiatric and other disorders, but their assessment remains challenging with current polymerase-based methods1-4. Here we introduce a CRISPR-Cas-based enrichment strategy for nanopore sequencing combined with an algorithm for raw signal analysis. Our method, termed STRique for short tandem repeat identification, quantification and evaluation, integrates conventional sequence mapping of nanopore reads with raw signal alignment for the localization of repeat boundaries and a hidden Markov model-based repeat counting mechanism. We demonstrate the precise quantification of repeat numbers in conjunction with the determination of CpG methylation states in the repeat expansion and in adjacent regions at the single-molecule level without amplification. Our method enables the study of previously inaccessible genomic regions and their epigenetic marks.


Subject(s)
DNA Methylation/genetics , Genomics/methods , Microsatellite Repeats/genetics , Nanopore Sequencing/methods , Algorithms , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , CRISPR-Cas Systems/genetics , Cells, Cultured , Humans , Nanopores
12.
Stem Cell Res ; 33: 20-24, 2018 12.
Article in English | MEDLINE | ID: mdl-30296670

ABSTRACT

Angelman syndrome (AS) is a neurodevelopmental disorder with leading symptoms of happy demeanor, intellectual disability, ataxia and seizures. AS can be caused by genetic and epigenetic aberrations, resulting in the absence of functional UBE3A protein in the brain. UBE3A is an imprinted gene, which is, in neurons of the brain, expressed exclusively from maternal chromosome 15. The generated iPSC line was derived from skin fibroblasts of a patient with AS, who, due to an imprinting defect, lacked DNA methylation at the chromosome 15 imprinting center, which controls maternal-specific expression of UBE3A. Resource table.


Subject(s)
Angelman Syndrome/genetics , Genomic Imprinting/genetics , Induced Pluripotent Stem Cells/metabolism , Child , Female , Humans
13.
Stem Cell Res ; 33: 120-124, 2018 12.
Article in English | MEDLINE | ID: mdl-30343101

ABSTRACT

Two isogenic hiPSC lines, ZIPi013-B and ZIPi013-E, were generated by reprogramming fetal dermal fibroblasts with episomal vectors. Previously, the same fetal fibroblasts were reprogrammed multiple times in a study comparing other reprogramming methods. As a consequence, the genomes have been sequenced multiple times. Both new cell lines offer the opportunity to study basic stem cell biology and model human disease. They can be applied as reference cell lines for creating isogenic clones bearing disease mutations on a well-characterized genomic background, as both cell lines have demonstrated excellent differentiation capacity in multiple labs. Resource table.


Subject(s)
Fetus/physiopathology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Female , Fibroblasts/cytology , Humans
14.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576218

ABSTRACT

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Subject(s)
Catalytic Domain/genetics , Metalloendopeptidases/genetics , Mutation/genetics , Nerve Degeneration/genetics , Child , Child, Preschool , Dermis/pathology , Electron Transport , Female , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Iron-Sulfur Proteins/genetics , Magnetic Resonance Imaging , Male , Mitochondria/metabolism , Pedigree , Proto-Oncogene Mas , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Mitochondrial Processing Peptidase
15.
Cell Rep ; 19(1): 50-59, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28380362

ABSTRACT

Miller-Dieker syndrome (MDS) is caused by a heterozygous deletion of chromosome 17p13.3 involving the genes LIS1 and YWHAE (coding for 14.3.3ε) and leads to malformations during cortical development. Here, we used patient-specific forebrain-type organoids to investigate pathological changes associated with MDS. Patient-derived organoids are significantly reduced in size, a change accompanied by a switch from symmetric to asymmetric cell division of ventricular zone radial glia cells (vRGCs). Alterations in microtubule network organization in vRGCs and a disruption of cortical niche architecture, including altered expression of cell adhesion molecules, are also observed. These phenotypic changes lead to a non-cell-autonomous disturbance of the N-cadherin/ß-catenin signaling axis. Reinstalling active ß-catenin signaling rescues division modes and ameliorates growth defects. Our data define the role of LIS1 and 14.3.3ε in maintaining the cortical niche and highlight the utility of organoid-based systems for modeling complex cell-cell interactions in vitro.


Subject(s)
Cerebral Cortex/pathology , Classical Lissencephalies and Subcortical Band Heterotopias/metabolism , Organoids/metabolism , Wnt Signaling Pathway , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Cadherins/metabolism , Cell Communication , Cell Division , Cerebral Cortex/abnormalities , Chromosome Deletion , Chromosomes, Human, Pair 17 , Ependymoglial Cells/metabolism , Gene Expression , Heterozygote , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Biological , Stem Cell Niche , Tissue Engineering , beta Catenin/metabolism
16.
Mov Disord ; 30(3): 301-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546831

ABSTRACT

The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement-based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders.


Subject(s)
Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/physiology , Movement Disorders/therapy , Stem Cell Transplantation , Animals , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...