Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Brain Behav Immun Health ; 16: 100318, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34589808

ABSTRACT

Recent investigations in neuroscience implicate the role of microbial-derived metabolites, such as short-chain fatty acids (SCFAs) in brain health and disease. The SCFAs acetate, propionate and butyrate have pleiotropic effects within the nervous system. They are crucial for the maturation of the brain's innate immune cells, the microglia, and modulate other glial cells through the aryl-hydrocarbon receptor. Investigations in preclinical and clinical models find that SCFAs exert neuroprotective and antidepressant affects, while also modulating the stress response and satiety. However, many investigations thus far have not assessed the impact of sex on SCFA activity. Our novel investigation tested the impact of physiologically relevant doses of SCFAs on male and female primary cortical astrocytes. We find that butyrate (0-25 â€‹µM) correlates with increased Bdnf and Pgc1-α expression, implicating histone-deacetylase inhibitor pathways. Intriguingly, this effect is only seen in females. We also find that acetate (0-1500 â€‹µM) correlates with increased Ahr and Gfap expression in males only, suggesting immune modulatory pathways. In males, propionate (0-35 â€‹µM) correlates with increased Il-22 expression, further suggesting immunomodulatory actions. These findings show a novel sex-dependent impact of acetate and butyrate, but not propionate on astrocyte gene expression.

2.
Stem Cells ; 39(12): 1688-1700, 2021 12.
Article in English | MEDLINE | ID: mdl-34486784

ABSTRACT

Fully differentiated cells can be reprogrammed through ectopic expression of key transcription factors to create induced pluripotent stem cells. These cells share many characteristics of normal embryonic stem cells and have great promise in disease modeling and regenerative medicine. The process of remodeling has its limitations, including a very low efficiency due to the upregulation of many antiproliferative genes, including cyclin dependent kinase inhibitors CDKN1A and CDKN2A, which serve to protect the cell by inducing apoptotic and senescent programs. Our data reveals a unique cell cycle mechanism enabling mouse fibroblasts to repress cyclin dependent kinase inhibitors through the activation of the epigenetic regulator EZH2 by a cyclin-like protein SPY1. This data reveals that the SPY1 protein is required for reprogramming to a pluripotent state and is capable of increasing reprogramming efficiency.


Subject(s)
Histones , Induced Pluripotent Stem Cells , Animals , Cellular Reprogramming/genetics , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Histones/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice
3.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33301421

ABSTRACT

Psychological stress affects maternal gastrointestinal (GI) permeability, leading to low-grade inflammation, which can negatively affect fetal development. We investigated a panel of circulating markers as a biological signature of this stress exposure in pregnant women with and without the stress-related GI disorder irritable bowel syndrome (IBS). Markers of GI permeability and inflammation were measured in plasma from healthy and IBS cohorts of women at 15 and 20 weeks' gestation. Biomarkers were evaluated with respect to their degree of association to levels of stress, anxiety, and depression as indicated by responses from the Perceived Stress Scale, State-Trait Anxiety Inventory, and Edinburgh Postnatal Depression Scale. High levels of stress were associated with elevations of soluble CD14, lipopolysaccharide binding protein (LBP), and tumor necrosis factor-α, while anxiety was associated with elevated concentrations of C-reactive protein (CRP) in otherwise healthy pregnancies. Prenatal depression was associated with higher levels of soluble CD14, LBP, and CRP in the healthy cohort. High levels of prenatal anxiety and depression were also associated with lower concentrations of tryptophan and kynurenine, respectively, in the IBS cohort. These markers may represent a core maternal biological signature of active prenatal stress, which can be used to inform intervention strategies via stress reduction techniques or other lifestyle approaches. Such interventions may need to be tailored to reflect underlying GI conditions, such as IBS.


Subject(s)
Pregnancy Complications/diagnosis , Stress, Psychological/complications , Stress, Psychological/diagnosis , Anxiety/blood , Anxiety/complications , Anxiety/diagnosis , Biomarkers/blood , Chemokines/blood , Cohort Studies , Cytokines/blood , Depression/blood , Depression/complications , Depression/diagnosis , Female , Fetal Development , Humans , Infant, Newborn , Inflammation Mediators/blood , Irritable Bowel Syndrome/blood , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/etiology , Pregnancy , Pregnancy Complications/blood , Pregnancy Outcome , Stress, Psychological/blood , Tryptophan/blood
4.
Water Res ; 190: 116647, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33310443

ABSTRACT

Roughly » of U.S. residents (80 million people) lack access to sanitary sewers and are required to treat their wastewater through a permitted onsite wastewater treatment system (OWTS). The vast majority use conventional septic systems with subsurface infiltration, which work well under most conditions. However, certain geologic conditions (e.g., impermeable soil, high water table) can preclude use of septic systems, requiring investment in expensive advanced OWTS. The confluence of lack of sewer, unsuitable geology, and poverty can lead households to have no feasible option for treating wastewater. In many such communities households discharge raw sewage onto the ground through what are commonly called "straight pipes." Here, we present the first effort to synthesize available evidence documenting the scope of straight pipe use in the U.S., including estimates of close to 50% straight pipe use in some counties. Despite reports that straight pipes are widespread and troubling preliminary evidence of adverse health effects, there has been no national effort to estimate the use or impacts of straight pipes. There are various disincentives that discourage the reporting of straight pipes by both residents and government actors. We propose ways to improve quantification of straight pipes and increase knowledge of their adverse effects. We identify the characteristics of areas with large proportions of straight pipes and describe the role of new and pending government programs in encouraging reporting and providing solutions.


Subject(s)
Groundwater , Water Purification , Humans , Sewage , Soil , United States , Wastewater
5.
Drug Deliv Transl Res ; 10(2): 425-439, 2020 04.
Article in English | MEDLINE | ID: mdl-31942701

ABSTRACT

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.


Subject(s)
Acetylglucosaminidase/administration & dosage , Acetylglucosaminidase/genetics , Blood-Brain Barrier/chemistry , Insulin-Like Growth Factor II/administration & dosage , Mucopolysaccharidosis III/drug therapy , Receptor, IGF Type 2/metabolism , Recombinant Fusion Proteins/administration & dosage , Acetylglucosaminidase/therapeutic use , Administration, Intravenous , Animals , Disease Models, Animal , Enzyme Replacement Therapy , Female , Infusions, Intraventricular , Insulin-Like Growth Factor II/therapeutic use , Male , Mice , Mice, Transgenic , Mucopolysaccharidosis III/genetics , Primates , Recombinant Fusion Proteins/therapeutic use , Translational Research, Biomedical
6.
Mol Genet Metab ; 129(2): 91-97, 2020 02.
Article in English | MEDLINE | ID: mdl-31630958

ABSTRACT

Therapeutic development and monitoring require demonstration of effects on disease phenotype. However, due to the complexity of measuring clinically-relevant effects in rare multisystem diseases, robust biomarkers are essential. For the mucopolysaccharidoses (MPS), the measurement of glycosaminoglycan levels is relevant as glycosaminoglycan accumulation is the primary event that occurs due to reduced lysosomal enzyme activity. Traditional dye-based assays that measure total glycosaminoglycan levels have a high background, due to a normal, baseline glycosaminoglycan content in unaffected individuals. An assay that selectively detects the disease-specific non-reducing ends of heparan sulfate glycosaminoglycans that remain undegraded due to deficiency of a specific enzyme in the catabolic pathway avoids the normal background, increasing sensitivity and specificity. We evaluated glycosaminoglycan content by dye-based and non-reducing end methods using urine, serum, and cerebrospinal fluid from MPS I human samples before and after treatment with intravenous recombinant human alpha-l-iduronidase. We found that both urine total glycosaminoglycans and serum heparan sulfate derived non-reducing end levels were markedly decreased compared to baseline after 26 weeks and 52 weeks of therapy, with a significantly greater percentage reduction in serum non-reducing end (89.8% at 26 weeks and 81.3% at 52 weeks) compared to urine total glycosaminoglycans (68.3% at 26 weeks and 62.4% at 52 weeks, p < 0.001). Unexpectedly, we also observed a decrease in non-reducing end levels in cerebrospinal fluid in all five subjects for whom samples were collected (mean 41.8% reduction, p = 0.01). The non-reducing ends in cerebrospinal fluid showed a positive correlation with serum non-reducing end levels in the subjects (r2 = 0.65, p = 0.005). Results suggest utility of the non-reducing end assay in evaluating a therapeutic response in MPS I.


Subject(s)
Enzyme Replacement Therapy , Glycosaminoglycans/blood , Glycosaminoglycans/urine , Mucopolysaccharidosis I/drug therapy , Biomarkers/blood , Clinical Laboratory Techniques , Drug Monitoring/methods , Glycosaminoglycans/cerebrospinal fluid , Humans , Iduronidase/genetics , Iduronidase/therapeutic use
7.
Neurogastroenterol Motil ; 32(1): e13726, 2020 01.
Article in English | MEDLINE | ID: mdl-31576631

ABSTRACT

BACKGROUND: A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS: This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS: Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES: These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.


Subject(s)
Enteric Nervous System/pathology , Gastrointestinal Microbiome , Parkinsonian Disorders , Substantia Nigra/metabolism , alpha-Synuclein/toxicity , Animals , Genetic Vectors , Humans , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Transfection , alpha-Synuclein/administration & dosage
8.
Microbiome ; 7(1): 39, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867067

ABSTRACT

BACKGROUND: There are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging. The purpose of this study was to test the effect of diets differing in sugar, fat, and fiber content upon the gut microbiota of mice humanized with microbiota from healthy or frail older people. We also performed a 6-month dietary fiber supplementation in three human cohorts representing three distinct life-stages. METHODS: Mice were colonized with human microbiota and then underwent an 8-week dietary intervention with either a high-fiber/low-fat diet typical of elderly community dwellers or a low-fiber/high-fat diet typical of long-stay residential care subjects. A cross-over design was used where the diets were switched after 4 weeks to the other diet type to identify responsive taxa and innate immunity changes. In the human intervention, the subjects supplemented their normal diet with a mix of five prebiotics (wheat dextrin, resistant starch, polydextrose, soluble corn fiber, and galactooligo-saccharide) at 10 g/day combined total, for healthy subjects and 20 g/day for frail subjects, or placebo (10 g/day maltodextrin) for 26 weeks. The gut microbiota was profiled and immune responses were assayed by T cell markers in mice, and serum cytokines in humans. RESULTS: Humanized mice maintained gut microbiota types reflecting the respective healthy or frail human donor. Changes in abundance of specific taxa occurred with the diet switch. In mice with the community type microbiota, the observed differences reflected compositions previously associated with higher frailty. The dominance of Prevotella present initially in community inoculated mice was replaced by Bacteroides, Alistipes, and Oscillibacter. Frail type microbiota showed a differential effect on innate immune markers in both conventional and germ-free mice, but a moderate number of taxonomic changes occurring upon diet switch with an increase in abundance of Parabacteroides, Blautia, Clostridium cluster IV, and Phascolarctobacterium. In the human intervention, prebiotic supplementation did not drive any global changes in alpha- or beta-diversity, but the abundance of certain bacterial taxa, particularly Ruminococcaceae (Clostridium cluster IV), Parabacteroides, Phascolarctobacterium, increased, and levels of the chemokine CXCL11 were significantly lower in the frail elderly group, but increased during the wash-out period. CONCLUSIONS: Switching to a nutritionally poorer diet has a profound effect on the microbiota in mouse models, with changes in the gut microbiota from healthy donors reflecting previously observed differences between elderly frail and non-frail individuals. However, the frailty-associated gut microbiota did not reciprocally switch to a younger healthy-subject like state, and supplementation with prebiotics was associated with fewer detected effects in humans than diet adjustment in animal models.


Subject(s)
Aging/immunology , Bacteria/classification , Germ-Free Life/immunology , Immunity, Innate/drug effects , Microbiota/drug effects , Prebiotics/administration & dosage , Adult , Aged , Animals , Bacteria/drug effects , Bacteria/genetics , Biodiversity , Chemokine CXCL11/genetics , Cross-Over Studies , Feces/microbiology , Female , Frail Elderly , Gastrointestinal Tract/microbiology , Humans , Male , Mice , Middle Aged , Models, Animal , Prebiotics/adverse effects , Treatment Outcome , Up-Regulation , Young Adult
9.
Clin J Am Soc Nephrol ; 14(3): 394-402, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30755453

ABSTRACT

BACKGROUND AND OBJECTIVES: Current hemodialysis techniques fail to efficiently remove the protein-bound uremic toxins p-cresyl sulfate and indoxyl sulfate due to their high degree of albumin binding. Ibuprofen, which shares the same primary albumin binding site with p-cresyl sulfate and indoxyl sulfate, can be infused during hemodialysis to displace these toxins, thereby augmenting their removal. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We infused 800 mg ibuprofen into the arterial bloodline between minutes 21 and 40 of a conventional 4-hour high-flux hemodialysis treatment. We measured arterial, venous, and dialysate outlet concentrations of indoxyl sulfate, p-cresyl sulfate, tryptophan, ibuprofen, urea, and creatinine before, during, and after the ibuprofen infusion. We report clearances of p-cresyl sulfate and indoxyl sulfate before and during ibuprofen infusion and dialysate concentrations of protein-bound uremic toxins normalized to each patient's average preinfusion concentrations. RESULTS: We studied 18 patients on maintenance hemodialysis: age 36±11 years old, ten women, and mean vintage of 37±37 months. Compared with during the preinfusion period, the median (interquartile range) clearances of indoxyl sulfate and p-cresyl sulfate increased during ibuprofen infusion from 6.0 (6.5) to 20.2 (27.1) ml/min and from 4.4 (6.7) to 14.9 (27.1) ml/min (each P<0.001), respectively. Relative median (interquartile range) protein-bound uremic toxin dialysate outlet levels increased from preinfusion 1.0 (reference) to 2.4 (1.2) for indoxyl sulfate and to 2.4 (1.0) for p-cresyl sulfate (each P<0.001). Although median serum post- and predialyzer levels in the preinfusion period were similar, infusion led to a marked drop in serum postdialyzer levels for both indoxyl sulfate and p-cresyl sulfate (-1.0 and -0.3 mg/dl, respectively; each P<0.001). The removal of the nonprotein-bound solutes creatinine and urea was not increased by the ibuprofen infusion. CONCLUSIONS: Infusion of ibuprofen into the arterial bloodline during hemodialysis significantly increases the dialytic removal of indoxyl sulfate and p-cresyl sulfate and thereby, leads to greater reduction in their serum levels.


Subject(s)
Cresols/blood , Ibuprofen/administration & dosage , Indican/blood , Renal Dialysis , Serum Albumin, Human/metabolism , Sulfuric Acid Esters/blood , Uremia/therapy , Adult , Binding, Competitive , Female , Humans , Ibuprofen/adverse effects , Ibuprofen/blood , Infusions, Intra-Arterial , Male , Middle Aged , Protein Binding , Renal Dialysis/adverse effects , Time Factors , Treatment Outcome , Uremia/blood , Uremia/diagnosis
10.
BMC Gastroenterol ; 18(1): 131, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30153805

ABSTRACT

BACKGROUND: Alteration of the gut microbiota by repeated antibiotic treatment increases susceptibility to Clostridioides difficile infection. Faecal microbiota transplantation from donors with a normal microbiota effectively treats C. difficile infection. METHODS: The study involved 10 patients with recurrent C. difficile infection, nine of whom received transplants from individual donors and one who received a donor unit from a stool bank (OpenBiome). RESULTS: All individuals demonstrated enduring post-transplant resolution of C. difficile- associated diarrhoea. Faecal microbiota diversity of recipients significantly increased, and the composition of the microbiota resembled that of the donor. Patients with C. difficile infection exhibited significantly lower faecal levels of secondary/ bile acids and higher levels of primary bile acids. Levels of secondary bile acids were restored in all transplant recipients, but to a lower degree with the OpenBiome transplant. The abundance increased of bacterial genera known from previous studies to confer resistance to growth and germination of C. difficile. These were significantly negatively associated with primary bile acid levels and positively related with secondary bile acid levels. Although reduced levels of the short chain fatty acids, butyrate, propionate and acetate, have been previously reported, here we report elevations in SCFA, pyruvic and lactic fatty acids, saturated, ω-6, monounsaturated, ω-3 and ω-6 polyunsaturated fatty acids (PUFA) in C. difficile infection. This potentially indicates one or a combination of increased dietary FA intake, microbial modification of FAs or epithelial cell damage and inflammatory cell recruitment. No reversion to donor FA profile occurred post-FMT but ω-3 to ω-6 PUFA ratios were altered in the direction of the donor. Archaeal metabolism genes were found in some samples post FMT. CONCLUSION: A consistent metabolic signature was identified in the post-transplant microbiota, with reduced primary bile acids and substantial restoration of secondary bile acid production capacity. Total FA levels were unchanged but the ratio of inflammatory to non-inflammatory FAs decreased.


Subject(s)
Clostridioides difficile , Clostridium Infections/microbiology , Clostridium Infections/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Adult , Aged , Aged, 80 and over , Bile Acids and Salts/metabolism , Clostridium Infections/metabolism , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Humans , Male , Middle Aged , Recurrence , Young Adult
11.
J Appl Lab Med ; 2(5): 777-783, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-33636874

ABSTRACT

BACKGROUND: Vitamin C deficiency is difficult to diagnose on the basis of clinical presentation alone and requires plasma levels for confirmation. Reference laboratories typically specify shipment of plasma on dry ice. This requirement may complicate clinic work flow and delay vitamin C measurement. Additionally, patients with vitamin C deficiency may experience unnecessary testing and increased health-care costs, as other diagnoses are often considered first. We examined an alternative, more practical shipping method. METHODS: Plasma was collected from 17 healthy volunteers by use of heparin tubes with gel separators, and all tubes were centrifuged immediately to separate the plasma layer from the cells. Baseline vitamin C was measured in plasma obtained immediately after specimen collection. Remaining sample tubes were held in Styrofoam containers with cold packs for 30 h or 48 h, followed by vitamin C measurement. Additional samples were exposed to conditions that simulated harsher shipping conditions. RESULTS: Mean plasma vitamin C was 69.6 µmol/L (SD = 21.5 µmol/L). Vitamin C losses were 5.4% at 30 h (SD = 5.55%, P < 0.05) and 7.6% at 48 h (SD = 5.56%, P < 0.05), which is slightly more than freeze-and-thaw treatment (average loss of 1.4%, SD = 6.9%, NS). The vitamin C method had an intraday variation of 1.88%. Vigorous shaking of 2 samples for 24 h resulted in a -1.9% change in 1 sample, and a +4.1% change in another sample. Exposure of the shipping container to elevated temperature (35 °C for 30 h) did not change the internal temperature of the container. CONCLUSIONS: The shipping procedure uses routine sample handling, standard vacutainers, and can be replicated by health-care centers seeking to evaluate patient vitamin C status.

12.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967887

ABSTRACT

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Subject(s)
Chemical Fractionation/methods , DNA/chemistry , Feces/chemistry , Metagenomics , Bacteria/genetics , Computational Biology , Humans , Quality Control , Species Specificity
13.
Mol Ther ; 25(12): 2743-2752, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28958576

ABSTRACT

Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain.


Subject(s)
Brain/drug effects , Brain/metabolism , Iduronidase/administration & dosage , Neomycin/administration & dosage , Administration, Intranasal , Animals , Biomarkers , Brain/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Enzyme Replacement Therapy , Gliosis/metabolism , Gliosis/pathology , Glycosaminoglycans/metabolism , Humans , Hydrolases , Liver/drug effects , Liver/metabolism , Lysosomes , Mice , Mice, Knockout , Neurons/metabolism
14.
Gut ; 66(4): 633-643, 2017 04.
Article in English | MEDLINE | ID: mdl-26992426

ABSTRACT

OBJECTIVE: A signature that unifies the colorectal cancer (CRC) microbiota across multiple studies has not been identified. In addition to methodological variance, heterogeneity may be caused by both microbial and host response differences, which was addressed in this study. DESIGN: We prospectively studied the colonic microbiota and the expression of specific host response genes using faecal and mucosal samples ('ON' and 'OFF' the tumour, proximal and distal) from 59 patients undergoing surgery for CRC, 21 individuals with polyps and 56 healthy controls. Microbiota composition was determined by 16S rRNA amplicon sequencing; expression of host genes involved in CRC progression and immune response was quantified by real-time quantitative PCR. RESULTS: The microbiota of patients with CRC differed from that of controls, but alterations were not restricted to the cancerous tissue. Differences between distal and proximal cancers were detected and faecal microbiota only partially reflected mucosal microbiota in CRC. Patients with CRC can be stratified based on higher level structures of mucosal-associated bacterial co-abundance groups (CAGs) that resemble the previously formulated concept of enterotypes. Of these, Bacteroidetes Cluster 1 and Firmicutes Cluster 1 were in decreased abundance in CRC mucosa, whereas Bacteroidetes Cluster 2, Firmicutes Cluster 2, Pathogen Cluster and Prevotella Cluster showed increased abundance in CRC mucosa. CRC-associated CAGs were differentially correlated with the expression of host immunoinflammatory response genes. CONCLUSIONS: CRC-associated microbiota profiles differ from those in healthy subjects and are linked with distinct mucosal gene-expression profiles. Compositional alterations in the microbiota are not restricted to cancerous tissue and differ between distal and proximal cancers.


Subject(s)
Colon/microbiology , Colonic Neoplasms/microbiology , Colonic Polyps/microbiology , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/analysis , Rectal Neoplasms/microbiology , Adult , Aged , Aged, 80 and over , Antigens, Bacterial/analysis , Bacteroidetes/immunology , Bacteroidetes/isolation & purification , Case-Control Studies , Chemokine CCL20/genetics , Chemokine CXCL1/genetics , Colonic Neoplasms/genetics , Colonic Polyps/genetics , Feces/microbiology , Female , Firmicutes/immunology , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Gene Expression , Humans , Interleukin-17/genetics , Interleukin-23/genetics , Intestinal Mucosa/microbiology , Male , Middle Aged , Plasminogen Activator Inhibitor 1/genetics , Prevotella/immunology , Prevotella/isolation & purification , Prospective Studies , Rectal Neoplasms/genetics
15.
Microbiome ; 4(1): 19, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27160322

ABSTRACT

BACKGROUND: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. RESULTS: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p < 0.001). When the microbiota profiles were analysed at the operational taxonomic unit (OTU) level, three infant datasets in the study did not cluster together, while only one elderly dataset did not. The lower microbiota diversity of the infant gut microbiota compared to the elderly gut microbiota (p < 0.001) means that any alteration in the infant datasets has a proportionally larger effect. CONCLUSIONS: The commercial storage vials appear to be suitable for high diversity microbiota samples, but may be less appropriate for lower diversity samples. Differences between fresh and stored samples mean that where storage is unavoidable, a consistent storage regime should be used. We would recommend extraction ideally within the first week of storage.


Subject(s)
DNA, Bacterial/genetics , Gastrointestinal Microbiome/genetics , Specimen Handling/methods , Adult , Aged , Aged, 80 and over , Bacteroides/genetics , Bacteroides/growth & development , Clostridium/genetics , Clostridium/growth & development , Faecalibacterium/genetics , Faecalibacterium/growth & development , Feces/microbiology , Humans , Infant , Intestines/microbiology , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics
16.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267636

ABSTRACT

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Subject(s)
Acetylglucosaminidase/therapeutic use , Brain/metabolism , Drug Delivery Systems , Insulin-Like Growth Factor II/therapeutic use , Mucopolysaccharidosis III/drug therapy , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/therapeutic use , Animals , Biomarkers/metabolism , Brain/pathology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Endocytosis , Fibroblasts/metabolism , Fibroblasts/pathology , Heparitin Sulfate/metabolism , Humans , Injections, Intraventricular , Liver/metabolism , Lysosomal Membrane Proteins/metabolism , Mice , Mucopolysaccharidosis III/pathology , Neurons/metabolism , Neurons/pathology , Protein Binding , beta-N-Acetylhexosaminidases/metabolism
17.
Mol Genet Metab ; 111(2): 73-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23958290

ABSTRACT

The mucopolysaccharidoses (MPS) result from attenuation or loss of enzyme activities required for lysosomal degradation of the glycosaminoglycans, hyaluronan, heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate. This review provides a summary of glycan biomarkers that have been used to characterize animal models of MPS, for diagnosis of patients, and for monitoring therapy based on hematopoietic stem cell transplantation and enzyme replacement therapy. Recent advances have focused on the non-reducing terminus of the glycosaminoglycans that accumulate as biomarkers, using a combination of enzymatic digestion with bacterial enzymes followed by quantitative liquid chromatography/mass spectrometry. These new methods provide a simple, rapid diagnostic strategy that can be applied to samples of urine, blood, cerebrospinal fluid, cultured cells and dried blood spots from newborn infants. Analysis of the non-reducing end glycans provides a method for monitoring enzyme replacement and substrate reduction therapies and serves as a discovery tool for uncovering novel biomarkers and new forms of mucopolysaccharidoses.


Subject(s)
Glycosaminoglycans/chemistry , Mucopolysaccharidoses/diagnosis , Animals , Biomarkers/chemistry , Chromatography, Liquid , Disease Models, Animal , Dried Blood Spot Testing , Enzyme Assays , Enzyme Replacement Therapy , Glycosaminoglycans/blood , Glycosaminoglycans/cerebrospinal fluid , Glycosaminoglycans/urine , Hematopoietic Stem Cell Transplantation , Humans , Immunoassay , Infant, Newborn , Mass Spectrometry , Mucopolysaccharidoses/blood , Mucopolysaccharidoses/cerebrospinal fluid , Mucopolysaccharidoses/therapy , Mucopolysaccharidoses/urine , Oxidation-Reduction
18.
Mol Genet Metab ; 111(2): 139-46, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24100247

ABSTRACT

Before the availability of an enzyme replacement therapy (ERT) for mucopolysaccharidosis type II (MPS II), patients were treated by bone marrow transplantation (BMT). However, the effectiveness of BMT for MPS II was equivocal, particularly at addressing the CNS manifestations. To study this further, we subjected a murine model of MPS II to BMT and evaluated the effect at correcting the biochemical and pathological aberrations in the viscera and CNS. Our results indicated that BMT reduced the accumulation of glycosaminoglycans (GAGs) in a variety of visceral organs, but not in the CNS. With the availability of an approved ERT for MPS II, we investigated and compared the relative merits of the two strategies either as a mono or combination therapy. We showed that the combination of BMT and ERT was additive at reducing tissue levels of GAGs in the heart, kidney and lung. Moreover, ERT conferred greater efficacy if the immunological response against the infused recombinant enzyme was low. Finally, we showed that pathologic GAGs might potentially represent a sensitive biomarker to monitor the therapeutic efficacy of therapies for MPS II.


Subject(s)
Bone Marrow Transplantation , Iduronate Sulfatase/administration & dosage , Mucopolysaccharidosis II/therapy , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Combined Modality Therapy , Disease Models, Animal , Enzyme Replacement Therapy , Female , Glycosaminoglycans/metabolism , Humans , Iduronate Sulfatase/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Mucopolysaccharidosis II/enzymology , Mucopolysaccharidosis II/pathology , Myocardium/metabolism , Myocardium/pathology , Recombinant Proteins/administration & dosage , Treatment Outcome
19.
Dis Markers ; 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23396297

ABSTRACT

Ahead of Print article withdrawn by publisher. At request of the authors, this article will be published in the journal Cancer Biomarkers (ISSN 1574-0153).

20.
Mol Genet Metab ; 106(1): 68-72, 2012 May.
Article in English | MEDLINE | ID: mdl-22402327

ABSTRACT

Intrathecal enzyme replacement therapy is an experimental option to treat central nervous system disease due to lysosomal storage. Previous work shows that MPS I dogs receiving enzyme replacement with recombinant human alpha-l-iduronidase into the cisterna magna showed normal brain glycosaminoglycan (GAG) storage after three or four doses. We analyzed MPS I dogs that received intrathecal enzyme in a previous study using an assay that detects only pathologic GAG (pGAG). To quantify pGAG in MPS I, the assay measures only those GAG which display terminal iduronic acid residues on their non-reducing ends. Mean cortical brain pGAG in six untreated MPS I dogs was 60.9±5.93 pmol/mg wet weight, and was 3.83±2.64 in eight normal or unaffected carrier animals (p<0.001). Intrathecal enzyme replacement significantly reduced pGAG storage in all treated animals. Dogs with low anti-iduronidase antibody titers showed normalization or near-normalization of pGAG in the brain (mean 8.17±6.17, n=7), while in dogs with higher titers, pGAG was reduced but not normal (mean 21.9±6.02, n=4). Intrathecal enzyme therapy also led to a mean 69% reduction in cerebrospinal fluid pGAG (from 83.8±26.3 to 27.2±12.3 pmol/ml CSF). The effect was measurable one month after each dose and did not differ with antibody titer. Prevention of the immune response to enzyme may improve the efficacy of intrathecal enzyme replacement therapy for brain disease due to MPS I.


Subject(s)
Enzyme Replacement Therapy , Glycosaminoglycans , Iduronidase/immunology , Immune Tolerance , Immunoglobulin G , Mucopolysaccharidosis I , Animals , Antibody Specificity/immunology , Brain/metabolism , Cyclosporine/administration & dosage , Disease Models, Animal , Dogs , Glycosaminoglycans/cerebrospinal fluid , Humans , Iduronidase/administration & dosage , Iduronidase/genetics , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Immunosuppressive Agents , Injections, Spinal , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/immunology , Mucopolysaccharidosis I/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...