Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.852
Filter
1.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961329

ABSTRACT

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Subject(s)
Fruit , Gene Expression Profiling , Metabolomics , Plant Leaves , Prunus persica , Plant Leaves/metabolism , Plant Leaves/genetics , Prunus persica/genetics , Prunus persica/metabolism , Prunus persica/growth & development , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Flavonoids/metabolism , Indoleacetic Acids/metabolism
2.
BMC Endocr Disord ; 24(1): 107, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982402

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a prevalent chronic disease often accompanied by low-grade inflammation. Recently, the neutrophil-to-lymphocyte ratio (NLR) has garnered researchers' interest as an emerging inflammation biomarker. This study aimed to comprehensively explore the relationship between NLR and T2DM using the National Health and Nutrition Examination Survey (NHANES) database. METHOD: We employed a cross-sectional study design to analyze data from five NHANES cycles from 2007 to 2016, excluding individuals with incomplete data. This study utilized a weighted logistic regression model, subgroup analyses, and restricted cubic spline (RCS) analysis to assess the potential relationship between NLR and T2DM. RESULTS: A total of 9903 participants were eligible for the analysis, of which 1280 were diagnosed with T2DM. The T2DM group exhibited significantly higher NLR levels than the non-T2DM group. After adjusting for potential confounders, elevated NLR levels were associated with an increased risk of developing T2DM, indicated by an odds ratio (OR) of 1.14, 95% CI: (1.05,1.24), P = 0.003. The results of the subgroup analyses revealed a significant interaction effect between NLR and T2DM concerning race and hypertension (P for interaction < 0.05). In contrast, no significant interactions were found for age, sex, education level, body mass index (BMI), smoking status, recreational activities, and alcohol drinker (P for interaction > 0.05). RCS analysis showed a significant non-linear relationship between NLR and T2DM, with an inflection point at 2.27 (all P for non-linearity < 0.05). CONCLUSION: Our study indicates that an elevated neutrophil-to-lymphocyte ratio is associated with a higher risk of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Lymphocytes , Neutrophils , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Cross-Sectional Studies , Female , Male , Neutrophils/pathology , Middle Aged , Lymphocytes/pathology , Nutrition Surveys , Biomarkers/blood , Adult , Aged , Prognosis , Lymphocyte Count , Leukocyte Count , Risk Factors
3.
J Chem Theory Comput ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980289

ABSTRACT

Excited-ground-state transition and strand slippage of RNA play key roles in transcription and translation of central dogma. Due to limitation of current experimental techniques, the dynamic structure ensembles of RNA remain inadequately understood. Molecular dynamics simulations offer a promising complementary approach, whose accuracy depends on the force field. Here, we develop the new version of RNA base-specific force field (BSFF2) to address underestimation of base pairing stability and artificial backbone conformations. Extensive evaluations on typical RNA systems have comprehensively confirmed the accuracy of BSFF2. Furthermore, BSFF2 demonstrates exceptional efficiency in de novo folding of tetraloops and reproducing base pair reshuffling transition between RNA excited and ground states. Then, we explored the RNA strand slippage mechanism with BSFF2. We conducted a comprehensive three-dimensional structural investigation into the strand slippage of the most complex r(G4C2)9 repeat element and presented the molecular details in the dynamic transition along with the underlying mechanism. Our results of capturing the strand slippage, excited-ground transition, de novo folding, and simulations for various typical RNA motifs indicate that BSFF2 should be one of valuable tools for dynamic conformation research and structure prediction of RNA, and a future contribution to RNA-targeted drug design as well as RNA therapy development.

4.
Int J Biol Macromol ; : 133926, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025180

ABSTRACT

To enhance the physicochemical properties and extend the release duration of sodium alginate (SA) hydrogels, this study explored the impact of acidifier type and the number of cross-linking on the physicochemical characteristics and in vitro anthocyanin release from SA hydrogels, utilizing calcium carbonate as the cross-linking agent. The findings revealed that the utilization of gluconolactone (GDL) as an acidifying agent in the preparation of SA hydrogels, as opposed to hydrochloric acid, resulted in a deceleration of the hydrolysis process of calcium carbonate. This deceleration led to the strengthening of hydrogen-bonding interactions and the development of a more compact network structure within the SA hydrogels. Consequently, there was a noticeable enhancement in the hardness, relaxation time, and anthocyanin encapsulation efficiency of the gels. Additionally, the release of anthocyanins in simulated intestinal fluid was delayed. Secondary cross-linking was found to facilitate ionic interactions between SA and Ca2+, further intensifying the denseness of the network structure and enhancing the physicochemical characteristics of the SA hydrogels. Overall, SA hydrogels processed with GDL as the acidifier and subjected to secondary cross-linking exhibited improved physicochemical properties, delayed release effects, and proved to be an efficient system for the delayed release of anthocyanins.

5.
Drug Resist Updat ; 76: 101121, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018660

ABSTRACT

In a clinical isolate of Burkholderia pseudomallei from Hainan, the association between the emergence of ceftazidime resistance and a novel PenA P174L allele was identified for the first time, providing an understanding of one mechanism by which ceftazidime resistance arises in B. pseudomallei.

6.
Chemosphere ; 363: 142866, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019176

ABSTRACT

The bioreduction of toxic chromium(VI) to sparingly soluble chromium(III) represents an environmentally friendly and cost-effective method for remediating Cr contamination. Usually, this bioreduction process is slow and requires the addition of quinone compounds as electron shuttles to enhance the reaction rate. However, the dissolved quinone compounds are susceptible to loss with water flow, thereby limiting their effectiveness. To address this challenge, this study loaded anthraquinone-2,6-disulfonate (AQDS), a typical quinone compound, onto biochar (BC) to create a novel solid-phase electron mediator (BC-AQDS) that can sustainably promote Cr(VI) bioreduction. The experimental results demonstrated that BC-AQDS significantly promoted the bioreduction of Cr(VI), where the reaction rate constant increased by 4.81 times, and the reduction extent increased by 38.31%. X-ray photoelectron spectroscopy and Fourier-Transform Infrared Spectroscopy analysis revealed that AQDS replaced the -OH functional groups on the BC surface to form BC-AQDS. Upon receiving electrons from Shewanella putrefaciens CN32, BC-AQDS was reduced to BC-AH2DS, which subsequently facilitated the reduction of Cr(VI) to Cr(III). This redox cycle between BC-AQDS and BC-AH2DS effectively enhanced the bioreduction rate of Cr(VI). Our study also found that a lower carbonization temperature of BC resulted in a higher surface -OH functional group content, enabling a greater load of AQDS and a more pronounced enhancement effect on the bioreduction of Cr(VI). Additionally, a smaller particle size of BC and a higher dosage of BC-AQDS further contributed to the enhancement of Cr(VI) bioreduction. The preparation of BC-AQDS in this study effectively improve the utilization of quinone compounds and offer a promising approach for enhancing the bioreduction of Cr(VI). It provides a more comprehensive reference for understanding and solving the problem of Cr pollution in groundwater.

7.
Acad Radiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39003228

ABSTRACT

RATIONALE AND OBJECTIVES: To assess the efficacy of a preoperative contrast-enhanced CT (CECT)-based deep learning radiomics nomogram (DLRN) for predicting murine double minute 2 (MDM2) gene amplification as a means of distinguishing between retroperitoneal well-differentiated liposarcomas (WDLPS) and lipomas. METHODS: This retrospective multi-center study included 167 patients (training/external test cohort, 104/63) with MDM2-positive WDLPS or MDM2-negative lipomas. Clinical data and CECT features were independently measured and analyzed by two radiologists. A clinico-radiological model, radiomics signature (RS), deep learning and radiomics signature (DLRS), and a DLRN incorporating radiomics and deep learning features were developed to differentiate between WDLPS and lipoma. The model utility was evaluated based on the area under the receiver operating characteristic curve (AUC), accuracy, calibration curve, and decision curve analysis (DCA). RESULTS: The DLRN showed good performance for distinguishing retroperitoneal lipomas and WDLPS in the training (AUC, 0.981; accuracy, 0.933) and external validation group (AUC, 0.861; accuracy, 0.810). The DeLong test revealed the DLRN was noticeably better than clinico-radiological and RS models (training: 0.981 vs. 0.890 vs. 0.751; validation: 0.861 vs. 0.724 vs. 0.700; both P < 0.05); however, no discernible difference in performance was seen between the DLRN and DLRS (training: 0.981 vs. 0.969; validation: 0.861 vs. 0.837; both P > 0.05). The calibration curve analysis and DCA demonstrated that the nomogram exhibited good calibration and offered substantial clinical advantages. CONCLUSION: The DLRN exhibited strong predictive capability in predicting WDLPS and retroperitoneal lipomas preoperatively, making it a promising imaging biomarker that can facilitate personalized management and precision medicine.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 559-566, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926371

ABSTRACT

OBJECTIVES: To investigate the efficacy and safety of subcutaneous immunotherapy (SCIT) using dust mites in children with allergic asthma. METHODS: In a prospective randomized controlled study, 98 children with dust mite-induced allergic asthma were randomly divided into a control group (n=49) and an SCIT group (n=49). The control group received inhaled corticosteroid treatment, while the SCIT group additionally received a standardized three-year SCIT regimen. The two groups were compared based on peripheral blood eosinophil percentage, visual analogue score (VAS), total medication score, Asthma Control Test/Childhood Asthma Control Test scores, fractional exhaled nitric oxide (FeNO), and lung function before treatment, and at 6 months, 1 year, 2 years, and 3 years after treatment. Adverse reactions were recorded post-injection to evaluate the safety of SCIT. RESULTS: Compared with pre-treatment levels, the SCIT group showed a significant reduction in the percentage of peripheral blood eosinophils, VAS, total medication score, and FeNO, while lung function significantly improved, and asthma control levels were better 3 years after treatment (P<0.05). Compared with the control group, the SCIT group showed more significant improvement in all evaluated indicators 3 years after treatment (P<0.05). A total of 2 744 injections were administered, resulting in 157 cases (5.72%) of local adverse reactions and 4 cases (0.15%) of systemic adverse reactions, with no severe systemic adverse events. CONCLUSIONS: SCIT is an effective and safe treatment for allergic asthma in children.


Subject(s)
Asthma , Pyroglyphidae , Humans , Asthma/therapy , Asthma/immunology , Male , Child , Female , Animals , Prospective Studies , Injections, Subcutaneous , Pyroglyphidae/immunology , Child, Preschool , Desensitization, Immunologic/methods , Desensitization, Immunologic/adverse effects , Adolescent
9.
Clin Exp Pharmacol Physiol ; 51(7): e13900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843865

ABSTRACT

Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.


Subject(s)
Cell Proliferation , Drugs, Chinese Herbal , Epithelial-Mesenchymal Transition , Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Cell Proliferation/drug effects , Female , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology
10.
Cell Biosci ; 14(1): 73, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845051

ABSTRACT

Recent studies have shifted the spotlight from adult disease to gametogenesis and embryo developmental events, and these are greatly affected by various environmental chemicals, such as drugs, metabolites, pollutants, and others. Growing research has highlighted the critical importance of identifying and understanding the roles of chemicals in reproductive biology. However, the functions and mechanisms of chemicals in reproductive processes remain incomplete. We developed a comprehensive database called the Reproductive Chemical Database (RCDB) ( https://yu.life.sjtu.edu.cn/ChenLab/RCDB ) to facilitate research on chemicals in reproductive biology. This resource is founded on rigorous manual literature extraction and precise protein target prediction methodologies. This database focuses on the delineation of chemicals associated with phenotypes, diseases, or endpoints intricately associated with four important reproductive processes: female and male gamete generation, fertilization, and embryo development in human and mouse. The RCDB encompasses 93 sub-GO processes, and it revealed 1447 intricate chemical-biological process interactions. To date, the RCDB has meticulously cataloged and annotated 830 distinct chemicals, while also predicting 614 target proteins from a selection of 3800 potential candidates. Additionally, the RCDB offers an online predictive tool that empowers researchers to ascertain whether specific chemicals play discernible functional roles in these reproductive processes. The RCDB is an exhaustive, cross-platform, manually curated database, which provides a user-friendly interface to search, browse, and use reproductive processes modulators and their comprehensive related information. The RCDB will help researchers to understand the whole reproductive process and related diseases and it has the potential to promote reproduction research in the pharmacological and pathophysiological areas.

11.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834545

ABSTRACT

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Subject(s)
Bacterial Proteins , Burkholderia pseudomallei , Macrophages , Mitochondria , Mitophagy , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/pathogenicity , Burkholderia pseudomallei/physiology , Burkholderia pseudomallei/genetics , Animals , Mice , Mitochondria/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Macrophages/microbiology , Macrophages/metabolism , Ubiquitination , Melioidosis/microbiology , Melioidosis/metabolism , Host-Pathogen Interactions , Reactive Oxygen Species/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , HEK293 Cells , RAW 264.7 Cells
12.
Acta Chim Slov ; 71(2): 236-243, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38919101

ABSTRACT

A new tetranuclear copper(II) complex [Cu4L2(N3)2(CH3OH)2](NO3)2·4CH3OH (1) and a new trinuclear zinc(II) complex [Zn3L2(CH3COO)2] (2) have been prepared from the bis-Schiff base N,N'-bis(4-bromosalicylidene)-1,3-propanediamine (H2L) with copper nitrate and zinc acetate, respectively, in the presence of sodium azide. The complexes were characterized by elemental analysis, IR and UV-Vis spectroscopy. Molecular structures of both complexes were confirmed by single crystal X-ray determination. The Cu(II) atoms in complex 1 are bridged by phenolate oxygen atoms and end-on azide ligands. The Zn(II) atoms in complex 2 are bridged by phenolate oxygen atoms and acetate ligands. The Cu(II) atoms in complex 1 are in square planar and square pyramidal coordination. The Zn(II) atoms in complex 2 are in square pyramidal and octahedral coordination. The Schiff base ligand coordinates to the metal atoms through two phenolate O and two imino N atoms. The biological assay reveals that the copper(II) complex has effective urease inhibition.

13.
EFORT Open Rev ; 9(6): 556-566, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828976

ABSTRACT

Objective: Through meta-analysis, this study aims to comprehensively evaluate the efficacy of single-plating and double-plating in the treatment of comminuted fractures of the distal femur. Methods: Computer searches of PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), VIP, and Wanfang digital journals were performed, and the timeframe for the searches was from the establishment of each database to July 2023 for each of the databases. Meta-analysis was performed using RevMan 5.4 software provided by the Cochrane Library, and the review process was registered in the PROSPERO database. Results: A total of ten studies were included for statistical analysis. One randomised controlled study and nine retrospective cohort studies with a total of 563 patients were included. The double-plate group was superior to the single-plate group in terms of knee mobility at 6 months postoperatively, overall postoperative complications, and the rate of healing of knee deformity. However, it increased the operation time and intraoperative bleeding, and the difference between the two groups was statistically significant (P < 0.05). There was no significant difference between the two groups in terms of excellent knee function rate, fracture healing time, plate fracture, postoperative infection, delayed fracture healing, and non-union (P ≥ 0.05). Conclusion: Double plate fixation for comminuted fractures of the distal femur can improve knee mobility at 6 months postoperatively, reduce overall postoperative complications, and decrease the incidence of malunion healing. However, it increases operative time and bleeding. Randomised studies are needed to provide strong evidence in the future.

15.
Proc Natl Acad Sci U S A ; 121(27): e2402143121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923993

ABSTRACT

The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (Mϕs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat-GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal Mϕs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in Mϕs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of Mϕ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.


Subject(s)
Acetylcholine , Choline O-Acetyltransferase , Macrophages, Peritoneal , Peritonitis , Animals , Choline O-Acetyltransferase/metabolism , Choline O-Acetyltransferase/genetics , Peritonitis/immunology , Peritonitis/metabolism , Mice , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Acetylcholine/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice, Inbred C57BL , Signal Transduction , Inflammation/metabolism , Inflammation/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Toll-Like Receptors/metabolism , Phagocytosis , Macrophages/metabolism , Macrophages/immunology , Mice, Knockout
16.
Food Chem ; 458: 140243, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944931

ABSTRACT

Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.

17.
Brain Behav Immun ; 120: 499-512, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944162

ABSTRACT

The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.

18.
Int J Med Sci ; 21(7): 1250-1256, 2024.
Article in English | MEDLINE | ID: mdl-38818475

ABSTRACT

Background: Recovery time is a crucial factor in ensuring the safety and effectiveness of both patients and endoscopy centers. Propofol is often preferred due to its fast onset and minimal side effects. Remimazolam is a new intravenous sedative agent, characterized by its rapid onset of action, quick recovery and organ-independent metabolism. Importantly, its effect can be specifically antagonized by flumazenil. The primary goal of this study is to compare the recovery time of remimazolam besylate and propofol anesthesia during endoscopic procedures in elderly patients. Methods: 60 patients aged 65-95 years who underwent gastrointestinal endoscopy were randomly and equally assigned to two groups: the remimazolam group (Group R) and the propofol group (Group P). The primary measure was the recovery time, defined as the time from discontinuing remimazolam or propofol until reaching an Observer's Assessment of Alertness and Sedation scale (OAA/S) score of 5 (responds readily to name spoken in normal tone). The time required to achieve an OAA/S score of 3 (responds after name spoken loudly or repeatedly along with glazed marked ptosis) was also recorded and compared. Results: The recovery time for Group R (2.6 ± 1.6 min) was significantly shorter than that for Group P (10.8 ± 3.0 min), with a 95% confidence interval (CI): 6.949-9.431 min, p <0.001. Similarly, the time to attain an OAA/S score of 3 was significantly less in Group R (1.6 ± 0.9 min) compared to Group P (9.6 ± 2.6 min), with a 95% CI: 6.930-8.957 min, p <0.001. Conclusion: Our study demonstrated that remimazolam anesthesia combined with flumazenil antagonism causes a shorter recovery time for elderly patients undergoing gastrointestinal endoscopy compared to propofol. Remimazolam followed by flumazenil antagonism provides a promising alternative to propofol for geriatric patients, particularly during gastrointestinal endoscopy.


Subject(s)
Anesthesia Recovery Period , Benzodiazepines , Endoscopy, Gastrointestinal , Hypnotics and Sedatives , Propofol , Humans , Aged , Propofol/administration & dosage , Male , Female , Aged, 80 and over , Endoscopy, Gastrointestinal/methods , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/adverse effects , Benzodiazepines/therapeutic use
19.
Neuromuscul Disord ; 39: 24-29, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714145

ABSTRACT

Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Translocation, Genetic , Muscular Dystrophy, Duchenne/genetics , Humans , Male , Dystrophin/genetics , Female , Chromosome Inversion/genetics , Adult , Child
20.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Article in English | MEDLINE | ID: mdl-38816029

ABSTRACT

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Subject(s)
Empathy , Fear , Mice, Inbred C57BL , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Oxytocin/metabolism , Male , Paraventricular Hypothalamic Nucleus/metabolism , Fear/physiology , Empathy/physiology , Neurons/metabolism , Mice , Receptors, Oxytocin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pain/physiopathology , Pain/psychology , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL