Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Plants (Basel) ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931118

ABSTRACT

There are obvious differences in quality between different varieties of the same plant, and it is not clear whether they can be effectively distinguished from each other from a bacterial point of view. In this study, 44 tea tree varieties (Camellia sinensis) were used to analyze the rhizosphere soil bacterial community using high-throughput sequencing technology, and five types of machine deep learning were used for modeling to obtain characteristic microorganisms that can effectively differentiate different varieties, and validation was performed. The relationship between characteristic microorganisms, soil nutrient transformation, and tea quality formation was further analyzed. It was found that 44 tea tree varieties were classified into two groups (group A and group B) and the characteristic bacteria that distinguished them came from 23 genera. Secondly, the content of rhizosphere soil available nutrients (available nitrogen, available phosphorus, and available potassium) and tea quality indexes (tea polyphenols, theanine, and caffeine) was significantly higher in group A than in group B. The classification result based on both was consistent with the above bacteria. This study provides a new insight and research methodology into the main reasons for the formation of quality differences among different varieties of the same plant.

2.
Food Chem ; 457: 139925, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38917567

ABSTRACT

Blueberry leaves (BBL) are a natural source with strong antioxidant activity, but bioactive compounds and their seasonal variation remain vague. Here, two major classes of compounds including four caffeoylquinic acids and eight flavonoids were identified in two southern highbush cultivars ("Lanmei" #1 and "Jewel") grown in China. Major bioactive compounds were discovered using an online HPLC post-column derivatization system and determined as neochlorogenic acid (NeoCA), chlorogenic acid (CA), rutin, hyperoside, and isoquercitrin. CA contributed the most to the BBL antioxidant activity. "Lanmei" showed significant advantages in terms of rutin content and antioxidant activity over "Jewel" (P < 0.05). The highest CA content (CAC) of juvenile "Jewel" leaves reached 17.9%. July was the optimum harvest time for both cultivars after fruiting stage. Total phenolic content (TPC) and Trolox equivalent antioxidant capacity (TEAC) of fresh BBL were accurately predicted by a portable near-infrared (NIR) device in a rapid, low-cost, and non-destructive way in situ.

3.
Biosens Bioelectron ; 259: 116409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795495

ABSTRACT

DNA-based molecular amplifiers offer significant promise for molecular-level disease diagnosis and treatment, yet tailoring their activation for precise timing and localization remains a challenge. Herein, we've pioneered a dual activation strategy harnessing external light and internal ATP to create a highly controlled DNA logic amplifier (FDLA) for accurate miRNA monitoring in cancer cells. The FDLA was constructed by tethered the two functionalized catalytic hairpin assembly (CHA) hairpin modules (ATP aptamer sealed hairpin aH1 and photocleavable (PC-linker) sites modified hairpin pH2) to DNA tetrahedron (DTN). The FDLA system incorporates ATP aptamers and PC-linkers as logic control units, allowing them to respond to both exogenous UV light and endogenous ATP present within cancer cells. This response triggers the release of CHA hairpin modules, enabling amplified FRET miRNA imaging through an AND-AND gate. The DTN structure could improve the stability of FDLA and accelerate the kinetics of the strand displacement reaction. It is noteworthy that the UV and ATP co-gated DNA circuit can control the DNA bio-computing at specific time and location, offering spatial and temporal capabilities that can be harnessed for miRNA imaging. Furthermore, the miRNA-sensing FDLA amplifier demonstrates reliable imaging of intracellular miRNA with minimal background noise and false-positive signals. This highlights the feasibility of utilizing both exogenous and endogenous regulatory strategies to achieve spatial and temporal control of DNA molecular circuits within living cancer cells. Such advancements hold immense potential for unraveling the correlation between miRNA and associated diseases.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , DNA , MicroRNAs , MicroRNAs/analysis , Humans , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , DNA/chemistry , DNA/genetics , Fluorescence Resonance Energy Transfer/methods , Ultraviolet Rays
4.
Eur Urol Oncol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693018

ABSTRACT

BACKGROUND AND OBJECTIVE: Cryoablation is a traditional antitumor therapy with good prospects for development. The efficacy of endoscopic management as a kidney-sparing surgery for high-risk upper tract urothelial carcinoma (UTUC) remains controversial. Our aim was to evaluate the impact of endoscopic cryoablation (ECA) versus radical nephroureterectomy (RNU) on survival outcomes, renal function, and complications. METHODS: We retrospectively analyzed data for 116 patients with newly diagnosed high-risk UTUC who underwent either ECA (n = 13) or RNU (n = 103) from March 25, 2019 to December 8, 2021. Propensity score matching (1:4) using the nearest neighbor method was performed before analysis. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), intravesical recurrence-free survival (RFS), the change in renal function, and treatment-emergent adverse events (TEAEs). KEY FINDINGS AND LIMITATIONS: At median follow-up of 28.2 mo for the ECA group and 27.6 mo for the RNU group, 2-yr OS (82% vs 84%), PFS (73% vs 71%), and intravesical RFS (81% vs 83%) rates after matching did not significantly differ. A decline in renal function was observed after RNU, but not after ECA. Five (41.7%) patients in the ECA group reported six TEAEs, and 17 patients (35.4%) in the RNU group reported 20 TEAEs. CONCLUSIONS AND CLINICAL IMPLICATIONS: In comparison to RNU, ECA for UTUC resulted in noninferior oncological outcomes and superior preservation of renal function. PATIENT SUMMARY: Our study suggests that a treatment called endoscopic cryoablation for high-risk cancer in the upper urinary tract can help in preserving kidney function, with similar survival outcomes to those after more extensive surgery. This option can be considered for selected patients with a strong preference for kidney preservation.

5.
Plants (Basel) ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794362

ABSTRACT

Aviation mutagenesis is a breeding method for the rapid selection of superior plant varieties. In this study, rhizosphere soil chemical indexes, soil enzyme activities, and soil metabolites were measured in Dahongpao tea trees with aviation mutagenesis (TM) and without aviation mutagenesis (CK). The main soil metabolites distinguishing TM and CK and their relationships with soil chemical indexes and soil enzyme activities were analyzed and obtained. The results showed that there was no significant change in the rhizosphere soils' pH of TM tea trees compared to CK (p = 0.91), while all other chemical indexes of TM were significantly higher than CK (p < 0.05). In addition, the activities of enzymes related to soil nutrient cycling such as urease, protease, sucrase, acid phosphatase and cellulase, and enzymes related to soil antioxidants such as superoxide dismutase, catalase, peroxidase, and polyphenol oxidase were significantly increased (p < 0.05) in the rhizosphere soils of TM tea trees compared to CK. Soil metabolite analysis showed that the main soil metabolites distinguishing CK from TM were carbohydrates, nitrogen compounds, and amines. Of these, carbohydrates and nitrogen compounds were significantly positively correlated with soil chemical indexes and soil enzymes, whereas amine was significantly negatively correlated with soil chemical indexes such as organic matter, total nitrogen, total potassium, available nitrogen, available phosphorus; amine showed significant negative correlation with soil enzymes such as catalase, peroxidase, polyphenol oxidase, and urease. It can be seen that aviation mutagenesis is conducive to improving the ability of tea tree rhizosphere aggregation and transformation of soil nutrients, increasing the total amount of soil nutrients and the content of available nutrients, which is more conducive to promoting the uptake of nutrients by the tea tree, and thus promoting the growth of the tea tree.

6.
Cell Transplant ; 33: 9636897241253144, 2024.
Article in English | MEDLINE | ID: mdl-38798036

ABSTRACT

This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-ß/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/ß-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.


Subject(s)
Biofilms , Endothelial Progenitor Cells , Myocardial Ischemia , Swine, Miniature , Animals , Swine , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Myocardial Ischemia/therapy , Myocardial Ischemia/complications , Extracorporeal Shockwave Therapy/methods , Myocardium/metabolism , Myocardium/pathology , Male
7.
Pediatr Pulmonol ; 59(6): 1757-1764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695627

ABSTRACT

BACKGROUND: Tracheal agenesis, or tracheal atresia, is a rare congenital anomaly. The presence of a tracheoesophageal fistula (TEF) can help with breathing for newborns with tracheal agenesis. In this article, we presented three unique cases and outcomes of neonates with tracheal agenesis along with a review of the literature. METHODS: This study consisted of a single center case series followed by a review of literature. Case reports were generated using both written and electronic medical records from a single hospital. We summarized three unique cases and outcomes of neonates with tracheal agenesis and performed a review of the literature. RESULTS: We identified three cases of tracheal agenesis presented with severe cyanosis without spontaneous crying upon birth. Experienced pediatricians attempted to intubate the babies but were unsuccessful. Endotracheal tubes were subsequently either accidentally or purposely placed into the esophagus, and oxygen saturation levels improved. This suggested tracheal agenesis with TEF. Two cases underwent surgical intervention after resuscitation with esophageal intubation. CONCLUSION: Esophageal intubation may be a life-sustaining ventilation support for patients with tracheal agenesis and TEF at initial resuscitation. Clinicians should suspect tracheal agenesis when a newborn presents with severe cyanosis and voiceless crying upon birth, and esophageal intubation should be immediately attempted.


Subject(s)
Intubation, Intratracheal , Trachea , Tracheoesophageal Fistula , Humans , Infant, Newborn , Trachea/abnormalities , Trachea/diagnostic imaging , Male , Intubation, Intratracheal/methods , Female , Tracheoesophageal Fistula/complications , Tracheoesophageal Fistula/surgery , Esophagus/abnormalities , Esophagus/diagnostic imaging , Resuscitation/methods , Cyanosis/etiology , Constriction, Pathologic
8.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790849

ABSTRACT

The quality of the Dahongpao mother tree (Camellia sinensis) remains a mystery to this day. In this study, for the first time, the differences between the Dahongpao mother tree (MD) and Dahongpao cuttings (PD), in terms of odor characteristics and taste characteristics were analyzed by metabomics. The results showed that MD had stronger floral, fruity, green, and woody odor characteristics than PD, and that the contributions were mainly from dihydromyrcenol, methyl salicylate, 2-isobutylpyrazine, 1,6-dihydrocarveol, gamma-terpineol, and linalyl acetate. Further, fresh and brisk taste and mellowness taste characteristics of MD were significantly higher than PD, with contributions mainly from amino acids and derivatives and organic acids. Secondly, bitterness taste characteristics of PD were significantly higher than MD, with contributions from phenolic acids, flavones, and flavonols. This study preliminarily unraveled the legend of the superior quality of the Dahongpao mother tree, and also provided an important reference for the breeding of tea-tree cuttings.

9.
Front Microbiol ; 15: 1374688, 2024.
Article in English | MEDLINE | ID: mdl-38585696

ABSTRACT

The outbreak of mass mortality occurred in Tachysurus fulvidraco farm in Hubei province of China. The pathogenic strain of Streptococcus iniae (termed 2022SI08) was isolated and identified from diseased T. fulvidraco, based on morphological, physiological, and biochemical characteristics, as well as 16S rRNA gene sequence and phylogenetic analysis. Further, the whole genome of isolate S. iniae was sequenced and predicted to contain one single circular chromosome of 1,776,777 bp with a GC content of 37.14%. The genomic sequence analysis showed that 2022SI08 was positive for 204 virulent and 127 antibiotic resistant genes. The experimental challenge demonstrated the high pathogenicity of the retrieved isolate of S. iniae, with a median lethal dosage (LD50) 9.53 × 105 CFU/g. Histopathological examination indicated that the 2022SI08 strain could induce extensive tissue cell degeneration, necrosis, hemorrhage, and inflammation in the skin, gill, fin, spleen, liver, kidney, intestine, eye, and brain. Moreover, the innate immune enzyme activities in serum such as acid phosphatase and alkaline phosphatase were increased significantly at 24 and 48 h post infection (hpi) and then decreased at 168 hpi. The transcriptional profile of immune associated gene in T. fulvidraco following bacterial infection was detected at each point of time, and the results revealed clear transcriptional activation of those genes, which proving their reacting and regulatory role during the response of the host against S. iniae infection. The results revealed that S. iniae was an etiological agent in the mass mortalities of T. fulvidraco and this research will be conducive for increasing our understanding on pathogenesis and host defensive system in S. iniae invasion.

10.
Front Immunol ; 15: 1368099, 2024.
Article in English | MEDLINE | ID: mdl-38665923

ABSTRACT

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Subject(s)
Endothelial Progenitor Cells , Membrane Proteins , Sepsis , Animals , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/immunology , Sepsis/immunology , Sepsis/metabolism , Mice , Mice, Knockout , Escherichia coli/immunology , Escherichia coli Infections/immunology , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/immunology , Cells, Cultured , Male
11.
Food Chem ; 449: 139183, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604028

ABSTRACT

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Subject(s)
Fagopyrum , Metabolomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fagopyrum/chemistry , Fagopyrum/growth & development , Fagopyrum/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Flavonoids/analysis , Chromatography, High Pressure Liquid , Plant Extracts/metabolism , Plant Extracts/chemistry , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Liquid Chromatography-Mass Spectrometry
12.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
13.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641226

ABSTRACT

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Subject(s)
Lysine , Protein Processing, Post-Translational , Proteome , STAT1 Transcription Factor , Silicosis , Animals , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , STAT1 Transcription Factor/metabolism , Proteome/metabolism , Lysine/metabolism , Acetylation/drug effects , Mice , Silicon Dioxide , Lung/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred C57BL , Proteomics/methods , Male , Succinic Acid/metabolism
14.
Foods ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540936

ABSTRACT

Aviation mutagenesis is a fast and efficient breeding method. In this study, we analyzed the effect of aviation mutagenesis on volatile compounds and odor characteristics in Dahongpao fresh leaves and gross tea for the first time. The results showed that aviation mutagenesis significantly increased the total volatile compounds of Dahongpao fresh leaves and gross tea. Aviation mutagenesis most critically significantly increased the content of beta-myrcene in Dahongpao fresh leaves, prompting its conversion to beta-pinene, cubebol, beta-phellandrene, zingiberene, (Z,Z)-3,6-nonadienal, and 6-pentyloxan-2-one after processing, which in turn enhanced the fruity, green, spicy, and woody odor characteristics of the gross tea. This study provided a reference for further exploration of aviation mutagenic breeding of Camellia sinensis.

15.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500170

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Hyperoxia , MicroRNAs , Rats , Animals , Cells, Cultured , Hyperoxia/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Extracellular Vesicles/physiology , Fibrosis , Acute Lung Injury/therapy , Acute Lung Injury/metabolism
16.
Am J Orthod Dentofacial Orthop ; 165(4): 458-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38189707

ABSTRACT

INTRODUCTION: The mechanosensitive ion channel, Piezo1, is responsible for transducing mechanical stimuli into intracellular biochemical signals and has been identified within periodontal ligament cells (PDLCs). Nonetheless, the precise biologic function of Piezo1 in the regulation of alveolar bone remodeling by PDLCs during compressive forces remains unclear. Therefore, this study focused on elucidating the role of the Piezo1 channel in alveolar bone remodeling and uncovering its underlying mechanisms. METHODS: PDLCs were subjected to compressive force and Piezo1 inhibitors. Piezo1 and ß-catenin expressions were quantified by quantitative reverse transcription polymerase chain reaction and Western blot. The intracellular calcium concentration was measured using Fluo-8 AM staining. The osteogenic and osteoclastic activities were assessed using alkaline phosphatase staining, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and Western blot. In vivo, orthodontic tooth movement was used to determine the effects of Piezo1 on alveolar bone remodeling. RESULTS: Piezo1 and activated ß-catenin expressions were upregulated under compressive force. Piezo1 inhibition reduced ß-catenin activation, osteogenic differentiation, and osteoclastic activities. ß-catenin knockdown reversed the increased osteogenic differentiation but had little impact on osteoclastic activities. In vivo, Piezo1 inhibition led to decreased tooth movement distance, accompanied by reduced ß-catenin activation and expression of osteogenic and osteoclastic markers on the compression side. CONCLUSIONS: The Piezo1 channel is a key mechanotransduction component of PDLCs that senses compressive force and activates ß-catenin to regulate alveolar bone remodeling.


Subject(s)
Osteogenesis , beta Catenin , Humans , beta Catenin/metabolism , Cells, Cultured , Mechanotransduction, Cellular , Periodontal Ligament , Bone Remodeling/physiology , Cell Differentiation/physiology
17.
Clin Exp Dermatol ; 49(5): 450-458, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38173286

ABSTRACT

The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.


Subject(s)
Antigens, CD1 , Skin Diseases , T-Lymphocytes , Humans , Antigens, CD1/metabolism , Antigens, CD1/immunology , Dermatitis, Allergic Contact/immunology , Dermatitis, Atopic/immunology , Langerhans Cells/immunology , Psoriasis/immunology , Skin/immunology , Skin/pathology , T-Lymphocytes/immunology , Skin Diseases/drug therapy , Skin Diseases/metabolism , Skin Diseases/pathology
18.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37858650

ABSTRACT

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Subject(s)
Fagopyrum , Quercetin , Quercetin/chemistry , Phenols , Phenol , Fagopyrum/chemistry , Rutin/chemistry , Binding Sites
19.
Life Sci Alliance ; 7(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38073578

ABSTRACT

The recent success of immunotherapies relying on manipulation of T-cell activation highlights the value of characterising the mediators of immune checkpoint signaling. CRISPR/Cas9 is a popular approach for interrogating signaling pathways; however, the lack of appropriate assays for studying inhibitory signaling in T cells is limiting the use of large-scale perturbation-based approaches. Here, we adapted an existing Jurkat cell-based transcriptional reporter assay to study both activatory and inhibitory (PD-1-mediated) T-cell signaling using CRISPR-based genome screening in arrayed and pooled formats. We targeted 64 SH2 domain-containing proteins expressed by Jurkat T cells in an arrayed screen, in which individual targets could be assessed independently, showing that arrays can be used to study mediators of both activatory and inhibitory signaling. Pooled screens succeeded in simultaneously identifying many of the known mediators of proximal activating and inhibitory T-cell signaling, including SHP2 and PD-1, confirming the utility of the method. Altogether, the data suggested that SHP2 is the major PD-1-specific, SH2 family mediator of inhibitory signaling. These approaches should allow the systematic analysis of signaling pathways in T cells.


Subject(s)
Programmed Cell Death 1 Receptor , T-Lymphocytes , T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/genetics , Proteins/metabolism , High-Throughput Screening Assays/methods , Signal Transduction
20.
J Sci Food Agric ; 104(2): 698-706, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37653274

ABSTRACT

BACKGROUND: This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS: There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION: These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Fagopyrum , Antioxidants/chemistry , Phenols/chemistry , Fagopyrum/chemistry , Molecular Docking Simulation , Rutin , Binding Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...