Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nat Commun ; 14(1): 8124, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065985

ABSTRACT

Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.


Subject(s)
IgA Deficiency , Humans , Bacteria , Escherichia coli , IgA Deficiency/immunology , IgA Deficiency/microbiology , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
2.
Cancers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37568739

ABSTRACT

Testicular cancer is predominantly curable, but the long-term side effects of chemotherapy have a severe impact on life quality. In this research study, we focus on hearing loss as a part of overall chemotherapy-induced ototoxicity. This is a unique approach where we combine clinical data from the acclaimed nationwide Danish Testicular Cancer (DaTeCa)-Late database. Clinical and genetic data on 433 patients were collected from hospital files in October 2014. Hearing loss was classified according to the FACT/GOG-Ntx-11 version 4 self-reported Ntx6. Machine learning models combining a genome-wide association study within a nested cross-validated logistic regression were applied to identify patients at high risk of hearing loss. The model comprising clinical and genetic data identified 67% of the patients with hearing loss; however, this was with a false discovery rate of 49%. For the non-affected patients, the model identified 66% of the patients with a false omission rate of 19%. An area under the receiver operating characteristic (ROC-AUC) curve of 0.73 (95% CI, 0.71-0.74) was obtained, and the model suggests genes SOD2 and MGST3 as important in improving prediction over the clinical-only model with a ROC-AUC of 0.66 (95% CI, 0.65-0.66). Such prediction models may be used to allow earlier detection and prevention of hearing loss. We suggest a possible biological mechanism for cisplatin-induced hearing loss development. On confirmation in larger studies, such models can help balance treatment in clinical practice.

3.
Cancer Epidemiol Biomarkers Prev ; 31(9): 1769-1779, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35700037

ABSTRACT

BACKGROUND: Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS: In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS: In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS: Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT: This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , DNA Methylation , Folic Acid , Genome-Wide Association Study , Humans , Male , Neoplasms, Germ Cell and Embryonal/genetics , Polymorphism, Single Nucleotide , Seminoma/genetics , Seminoma/metabolism , Seminoma/pathology , Testicular Neoplasms/genetics
4.
Front Microbiol ; 13: 878696, 2022.
Article in English | MEDLINE | ID: mdl-35369490

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2017.01934.].

5.
Vision (Basel) ; 5(2)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205001

ABSTRACT

Our objectives were to investigate whether the conjunctival microbiota is altered by contact lens wear and/or bacterial keratitis and to explore the hypothesis that commensals of conjunctival microbiota contribute to bacterial keratitis. Swab samples from both eyes were collected separately from the inferior fornix of the conjunctiva of non-contact-lens users (nparticipants = 28) and contact lens users (nparticipants = 26) and from patients with contact-lens-associated bacterial keratitis (nparticipants = 9). DNA from conjunctival swab samples was analyzed with 16S rRNA gene amplicon sequencing. Pathogens from the corneal infiltrates were identified by cultivation. In total, we identified 19 phyla and 283 genera; the four most abundant genera were Pseudomonas, Enhydrobacter, Staphylococcus, and Cutibacterium. Several pathogens related to bacterial keratitis were identified in the conjunctival microbiota of the whole study population, and the same bacteria were identified by both methods in the conjunctiva and cornea for four patients with contact-lens-associated bacterial keratitis. The overall conjunctival microbiota profile was not altered by contact lens wear or bacterial keratitis; thus, it does not appear to contribute to the development of bacterial keratitis in contact lens users. However, in some individuals, conjunctival microbiota may harbor opportunistic pathogens causing contact-lens-associated bacterial keratitis.

6.
Cancers (Basel) ; 13(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34067956

ABSTRACT

Circulating miRNAs secreted by testicular germ cell tumors (TGCT) show great potential as novel non-invasive biomarkers for diagnosis of TGCT. Seminal plasma (SP) represents a biofluid closer to the primary site. Here, we investigate whether small RNAs in SP can be used to diagnose men with TGCTs or the precursor lesions, germ cell neoplasia in situ (GCNIS). Small RNAs isolated from SP from men with TGCTs (n = 18), GCNIS-only (n = 5), and controls (n = 25) were sequenced. SP from men with TGCT/GCNIS (n = 37) and controls (n = 22) were used for validation by RT-qPCR. In general, piRNAs were found at lower levels in SP from men with TGCTs. Ten small RNAs were found at significantly (q-value < 0.05) different levels in SP from men with TGCT/GCNIS than controls. Random forests classification identified sets of small RNAs that could detect either TGCT/GCNIS or GCNIS-only with an area under the curve of 0.98 and 1 in ROC analyses, respectively. RT-qPCR validated hsa-miR-6782-5p to be present at 2.3-fold lower levels (p = 0.02) in the SP from men with TGCTs compared with controls. Small RNAs in SP show potential as novel biomarkers for diagnosing men with TGCT/GCNIS but validation in larger cohorts is needed.

7.
Chemosphere ; 284: 131225, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34182286

ABSTRACT

Conazole fungicides such as epoxiconazole are mostly used on cereals of crops to inhibit fungal growth through direct inhibition of sterol 14α-demethylase (CYP51A1). However, this enzyme is highly conserved and in humans it is part of the steroid hormone biosynthesis pathway. Endocrine disrupting effects of epoxiconazole have been shown in rodents and have been substantiated by in vitro data, however, the underlying molecular mechanisms are not clear. We took advantage of a human stem cell based in vitro model for developmental toxicity to study the molecular effects of epoxiconazole. This model is based on 3D cultures of embryoid bodies and differentiation into cardiomyocytes, which mimics the early stages of embryonic development. We have previously shown that epoxiconazole impairs differentiation of these embryoid bodies and therefore has the potential to affect human embryonic development. We employed global transcriptome analysis using RNA sequencing and found that the steroid biosynthesis pathway including CYP51A1, the human sterol 14α-demethylase, was highly deregulated by epoxiconazole in our model. We confirmed that most genes of the steroid biosynthesis pathway were upregulated, including CYP51A1, suggesting a compensatory mechanism at the gene expression level. Our data suggest that epoxiconazole acts mainly by decreasing cholesterol biosynthesis in the cells. We conclude that epoxiconazole bears the potential to harm human embryonic development through inhibition of the steroid biosynthesis pathway. As this may be a common feature of compounds that target sterol 14α-demethylase, we add evidence to the assumption that conazole fungicides may be human developmental toxicants.


Subject(s)
Fungicides, Industrial , Transcriptome , Epoxy Compounds/toxicity , Female , Fungicides, Industrial/toxicity , Humans , Pregnancy , Stem Cells , Triazoles/toxicity
8.
Cancer Epidemiol Biomarkers Prev ; 30(6): 1275-1278, 2021 06.
Article in English | MEDLINE | ID: mdl-33737296

ABSTRACT

BACKGROUND: Studies evaluating the association between peripheral blood leukocyte telomere length (LTL) and testicular germ cell tumor (TGCT) risk have produced conflicting results. METHODS: Using available genotype data from the Testicular Cancer Consortium (TECAC), polygenic risk score and Mendelian randomization analyses of genetic variants previously associated with LTL were used to assess potential etiologic associations between telomere length and TGCT risk. RESULTS: Genetically inferred telomere length was not associated with TGCT risk among 2,049 cases and 6,921 controls with individual-level genotype data (OR, 1.02; 95% confidence interval, 0.97-1.07). Mendelian randomization analyses using summary statistic data further indicated no evidence for an association between telomere length and TGCT risk among all available TECAC participants (3,558 cases and 13,971 controls). CONCLUSIONS: Our analyses in the largest molecular genetic testicular cancer study to date provide no evidence for an association between genetically inferred peripheral blood LTL and TGCT risk. IMPACT: The lack of evidence for an overall association indicates that peripheral blood LTL is likely not a strong biomarker for TGCT risk.


Subject(s)
Neoplasms, Germ Cell and Embryonal/epidemiology , Telomere Homeostasis/genetics , Telomere/metabolism , Testicular Neoplasms/epidemiology , Case-Control Studies , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Neoplasms, Germ Cell and Embryonal/genetics , Risk Assessment/statistics & numerical data , Risk Factors , Testicular Neoplasms/genetics
9.
Environ Int ; 149: 106388, 2021 04.
Article in English | MEDLINE | ID: mdl-33524668

ABSTRACT

The analgesic paracetamol/acetaminophen (N-acetyl-4-aminophenol, APAP) is commonly used to relieve pain, fever and malaise. While sales have increased worldwide, a growing body of experimental and epidemiological evidence has suggested APAP as a possible risk factor for various health disorders in humans. To perform internal exposure-based risk assessment, the use of accurate and optimized biomonitoring methods is critical. However, retrospectively assessing pharmaceutical use of APAP in humans is challenging because of its short half-life. The objective of this study was to address the key issue of potential underestimation of APAP use using current standard analytical methods based on urinary analyses of free APAP and its phase II conjugates. The question we address is whether investigating additional metabolites than direct phase II conjugates could improve the monitoring of APAP. Using non-targeted analyses based on high-resolution mass spectrometry, we identified, in a controlled longitudinal exposure study with male volunteers, overlooked APAP metabolites with delayed formation and excretion rates. We postulate that these metabolites are formed via the thiomethyl shunt after the enterohepatic circulation as already observed in rodents. Importantly, these conjugated thiomethyl metabolites were (i) of comparable diagnostic sensitivity as the free APAP and its phase II conjugates detected by current methods; (ii) had delayed peak levels in blood and urine compared to other APAP metabolites and therefore potentially extend the window of exposure assessment; and (iii) provide relevant information regarding metabolic pathways of interest from a toxicological point of view. Including these metabolites in future APAP biomonitoring methods therefore provides an option to decrease potential underestimation of APAP use. Moreover, our data challenge the notion that the standard methods in biomonitoring based exclusively on the parent compound and its phase II metabolites are adequate for human biomonitoring of a non-persistent chemical such as APAP.


Subject(s)
Acetaminophen , Biological Monitoring , Humans , Male , Mass Spectrometry , Retrospective Studies
10.
Ocul Surf ; 19: 210-217, 2021 01.
Article in English | MEDLINE | ID: mdl-32931939

ABSTRACT

PURPOSE: An altered ocular surface microbiota may contribute to the pathophysiology of dry eye disease. The aim of the study was to explore potential differences in microbiota diversity and composition in aqueous tear-deficient dry eye (with and without ocular graft-versus-host disease) compared with controls. METHODS: Swab samples from the inferior fornix of the conjunctiva were obtained from patients with aqueous tear-deficient dry eye with and without ocular graft-versus-host disease (n = 18, n = 21, respectively) and controls (n = 28). Isolated bacterial DNA from swabs were analyzed with 16S rRNA gene amplicon sequencing. RESULTS: Decreased microbiota diversity was observed in patients with aqueous tear-deficient dry eye (p ≤ 0.003) who also showed a difference in microbiota composition compared with controls (p = 0.001). Although several genera were less abundant in aqueous tear-deficient dry eye, a minimal core ocular surface microbiota comprising five genera was shared by >75% of the study participants: Enhydrobacter, Brevibacterium, Staphylococcus, Streptococcus and Cutibacterium. Pseudomonas was identified as a bacterial biomarker for controls and Bacilli for patients with aqueous tear-deficient dry eye. CONCLUSIONS: Ocular surface microbiota in patients with aqueous tear-deficient dry eye was characterized by an aberrant microbiota composition in comparison to controls, with decreased diversity and reduced relative abundances of several genera. Additionally, a few genera were present in most of the study population, indicating that a minimal core ocular surface microbiota may exist.


Subject(s)
Dry Eye Syndromes , Microbiota , Conjunctiva , Humans , RNA, Ribosomal, 16S/genetics , Tears
11.
Sci Rep ; 10(1): 20103, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208769

ABSTRACT

Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84-0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.


Subject(s)
Diet Therapy/methods , Gastrointestinal Microbiome , Weight Loss , Biomarkers/blood , Biomarkers/urine , Female , Genome-Wide Association Study , Humans , Machine Learning , Male , Postprandial Period , ROC Curve , Randomized Controlled Trials as Topic , Reproducibility of Results , Treatment Outcome , Whole Grains
12.
Genome Med ; 12(1): 76, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859249

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) occurs in almost 1% of newborn children and is considered a multifactorial disorder. CHD may segregate in families due to significant contribution of genetic factors in the disease etiology. The aim of the study was to identify pathophysiological mechanisms in families segregating CHD. METHODS: We used whole exome sequencing to identify rare genetic variants in ninety consenting participants from 32 Danish families with recurrent CHD. We applied a systems biology approach to identify developmental mechanisms influenced by accumulation of rare variants. We used an independent cohort of 714 CHD cases and 4922 controls for replication and performed functional investigations using zebrafish as in vivo model. RESULTS: We identified 1785 genes, in which rare alleles were shared between affected individuals within a family. These genes were enriched for known cardiac developmental genes, and 218 of these genes were mutated in more than one family. Our analysis revealed a functional cluster, enriched for proteins with a known participation in calcium signaling. Replication in an independent cohort confirmed increased mutation burden of calcium-signaling genes in CHD patients. Functional investigation of zebrafish orthologues of ITPR1, PLCB2, and ADCY2 verified a role in cardiac development and suggests a combinatorial effect of inactivation of these genes. CONCLUSIONS: The study identifies abnormal calcium signaling as a novel pathophysiological mechanism in human CHD and confirms the complex genetic architecture underlying CHD.


Subject(s)
Calcium Signaling , Calcium/metabolism , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Systems Biology/methods , Alleles , Animals , Computational Biology/methods , Databases, Genetic , Denmark , Female , Genetic Association Studies/methods , Genetic Variation , Humans , Male , Protein Interaction Mapping , Protein Interaction Maps , Registries , Exome Sequencing , Zebrafish
13.
JNCI Cancer Spectr ; 4(3): pkaa032, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32617516

ABSTRACT

BACKGROUND: Cisplatin-based chemotherapy may induce nephrotoxicity. This study presents a random forest predictive model that identifies testicular cancer patients at risk of nephrotoxicity before treatment. METHODS: Clinical data and DNA from saliva samples were collected for 433 patients. These were genotyped on Illumina HumanOmniExpressExome-8 v1.2 (964 193 markers). Clinical and genomics-based random forest models generated a risk score for each individual to develop nephrotoxicity defined as a 20% drop in isotopic glomerular filtration rate during chemotherapy. The area under the receiver operating characteristic curve was the primary measure to evaluate models. Sensitivity, specificity, and positive and negative predictive values were used to discuss model clinical utility. RESULTS: Of 433 patients assessed in this study, 26.8% developed nephrotoxicity after bleomycin-etoposide-cisplatin treatment. Genomic markers found to be associated with nephrotoxicity were located at NAT1, NAT2, and the intergenic region of CNTN6 and CNTN4. These, in addition to previously associated markers located at ERCC1, ERCC2, and SLC22A2, were found to improve predictions in a clinical feature-trained random forest model. Using only clinical data for training the model, an area under the receiver operating characteristic curve of 0.635 (95% confidence interval [CI] = 0.629 to 0.640) was obtained. Retraining the classifier by adding genomics markers increased performance to 0.731 (95% CI = 0.726 to 0.736) and 0.692 (95% CI = 0.688 to 0.696) on the holdout set. CONCLUSIONS: A clinical and genomics-based machine learning algorithm improved the ability to identify patients at risk of nephrotoxicity compared with using clinical variables alone. Novel genetics associations with cisplatin-induced nephrotoxicity were found for NAT1, NAT2, CNTN6, and CNTN4 that require replication in larger studies before application to clinical practice.

14.
Gut ; 68(1): 83-93, 2019 01.
Article in English | MEDLINE | ID: mdl-29097438

ABSTRACT

OBJECTIVE: To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN: 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS: 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION: Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER: NCT01731366; Results.


Subject(s)
Gastrointestinal Microbiome , Inflammation/blood , Weight Loss , Whole Grains , Adult , Aged , Blood Glucose/metabolism , Cross-Over Studies , Denmark , Diet , Energy Intake , Feces/microbiology , Female , Humans , Inflammation/diet therapy , Insulin Resistance , Interleukin-6/blood , Lipids/blood , Male , Metabolomics , Middle Aged
15.
Front Sociol ; 4: 74, 2019.
Article in English | MEDLINE | ID: mdl-33869396

ABSTRACT

Biological, genetic, and socio-demographic factors are all important in explaining reproductive behavior, yet these factors are typically studied in isolation. In this study, we explore an innovative sociogenomic approach, which entails including key socio-demographic (marriage, education, occupation, religion, cohort) and genetic factors related to both behavioral [age at first birth (AFB), number of children ever born (NEB)] and biological fecundity-related outcomes (endometriosis, age at menopause and menarche, polycystic ovary syndrome, azoospermia, testicular dysgenesis syndrome) to explain childlessness. We examine the association of all sets of factors with childlessness as well as the interplay between them. We derive polygenic scores (PGS) from recent genome-wide association studies (GWAS) and apply these in the Health and Retirement Study (N = 10,686) and Wisconsin Longitudinal Study (N = 8,284). Both socio-demographic and genetic factors were associated with childlessness. Whilst socio-demographic factors explain 19-46% in childlessness, the current PGS explains <1% of the variance, and only PGSs from large GWASs are related to childlessness. Our findings also indicate that genetic and socio-demographic factors are not independent, with PGSs for AFB and NEB related to education and age at marriage. The explained variance by polygenic scores on childlessness is limited since it is largely a behavioral trait, with genetic explanations expected to increase somewhat in the future with better-powered GWASs. As genotyping of individuals in social science surveys becomes more prevalent, the method described in this study can be applied to other outcomes.

16.
Nat Commun ; 9(1): 4630, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425247

ABSTRACT

Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres.


Subject(s)
Diet , Gastrointestinal Microbiome , Glutens/administration & dosage , Glutens/adverse effects , Adult , Aged , Body Mass Index , Creatinine/urine , Cross-Over Studies , Cytokines/blood , DNA, Bacterial/analysis , Denmark , Fasting , Feces/microbiology , Female , Fermentation , Gastrointestinal Microbiome/genetics , Humans , Hydrogen , Intestines/microbiology , Male , Metabolomics , Metagenomics , Middle Aged , Postprandial Period , Self Report , Young Adult
17.
Leukemia ; 32(12): 2527-2535, 2018 12.
Article in English | MEDLINE | ID: mdl-30201983

ABSTRACT

The antileukaemic drug 6-mercaptopurine is converted into thioguanine nucleotides (TGN) and incorporated into DNA (DNA-TG), the active end metabolite. In a series of genome-wide association studies, we analysed time-weighted means (wm) of erythrocyte concentrations of TGN (Ery-TGN) and DNA-TG in 1009 patients undergoing maintenance therapy for acute lymphoblastic leukaemia (ALL). In discovery analyses (454 patients), the propensity for DNA-TG incorporation (wmDNA-TG/wmEry-TGN ratio) was significantly associated with three intronic SNPs in NT5C2 (top hit: rs72846714; P = 2.09 × 10-10, minor allele frequency 15%). In validation analyses (555 patients), this association remained significant during both early and late maintenance therapy (P = 8.4 × 10-6 and 1.3 × 10-3, respectively). The association was mostly driven by differences in wmEry-TGN, but in regression analyses adjusted for wmEry-TGN (P < 0.0001), rs72846714-A genotype was also associated with a higher wmDNA-TG (P = 0.029). Targeted sequencing of NT5C2 did not identify any missense variants associated with rs72846714 or wmEry-TGN/wmDNA-TG. rs72846714 was not associated with relapse risk, but in a separate cohort of 180 children with relapsed ALL, rs72846714-A genotype was associated with increased occurrence of relapse-specific NT5C2 gain-of-function mutations that reduce cytosol TGN levels (P = 0.03). These observations highlight the impact of both germline and acquired mutations in drug metabolism and disease trajectory.


Subject(s)
5'-Nucleotidase/genetics , Germ Cells/metabolism , Polymorphism, Single Nucleotide/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adolescent , Antimetabolites, Antineoplastic/therapeutic use , Child , Child, Preschool , DNA/metabolism , Female , Gene Frequency/drug effects , Gene Frequency/genetics , Genome-Wide Association Study/methods , Genotype , Humans , Infant , Male , Mercaptopurine/therapeutic use , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence , Thioguanine/metabolism
18.
J Virol Methods ; 261: 14-16, 2018 11.
Article in English | MEDLINE | ID: mdl-30063908

ABSTRACT

African swine fever (ASF) is an important disease of domestic pigs and wild boar. The disease is caused by African swine fever virus (ASFV). In 2014, ASFV was introduced into Eastern Europe, and it has since then continued to spread within various Eastern European countries. Investigating differences in sequences between ASFV isolates may be a valuable tool to understand differences in virulence among them, however currently, no complete genome sequences of the viruses responsible for the Eastern European outbreaks have been reported. In this study, the complete genome sequence of a highly virulent ASFV was determined directly from erythrocyte-associated nucleic acids obtained from a pig experimentally infected with an isolate from Poland (ASFV POL/2015/Podlaskie). The sequence (ca. 189 kb) of this recent European ASFV showed 95 nt differences (99.95% identity) from the ASFV Georgia 2007/1 genome. The complete sequence of ASFV POL/2015/Podlaskie should assist further studies on the genetic diversity and evolution of the European ASFVs.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/virology , DNA, Viral/chemistry , DNA, Viral/genetics , Erythrocytes/virology , Genome, Viral , Sequence Analysis, DNA , African Swine Fever Virus/isolation & purification , Animals , DNA, Viral/isolation & purification , Poland , Swine
19.
Cell Death Dis ; 9(6): 586, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789566

ABSTRACT

The most common human sex chromosomal disorder is Klinefelter syndrome (KS; 47,XXY). Adult patients with KS display a diverse phenotype but are nearly always infertile, due to testicular degeneration at puberty. To identify mechanisms causing the selective destruction of the seminiferous epithelium, we performed RNA-sequencing of 24 fixed paraffin-embedded testicular tissue samples. Analysis of informative transcriptomes revealed 235 differentially expressed transcripts (DETs) in the adult KS testis showing enrichment of long non-coding RNAs, but surprisingly not of X-chromosomal transcripts. Comparison to 46,XY samples with complete spermatogenesis and Sertoli cell-only-syndrome allowed prediction of the cellular origin of 71 of the DETs. DACH2 and FAM9A were validated by immunohistochemistry and found to mark apparently undifferentiated somatic cell populations in the KS testes. Moreover, transcriptomes from fetal, pre-pubertal, and adult KS testes showed a limited overlap, indicating that different mechanisms are likely to operate at each developmental stage. Based on our data, we propose that testicular degeneration in men with KS is a consequence of germ cells loss initiated during early development in combination with disturbed maturation of Sertoli- and Leydig cells.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Klinefelter Syndrome/genetics , Klinefelter Syndrome/pathology , Leydig Cells/pathology , Sertoli Cells/pathology , Testis/pathology , Adult , Case-Control Studies , Humans , Leydig Cells/metabolism , Male , Puberty/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sertoli Cells/metabolism , Transcriptome/genetics
20.
Proc Natl Acad Sci U S A ; 115(4): E715-E724, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311296

ABSTRACT

Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism.


Subject(s)
Analgesics, Non-Narcotic/adverse effects , Hypogonadism/chemically induced , Ibuprofen/adverse effects , Luteinizing Hormone/blood , Testosterone/blood , Adult , Analgesics, Non-Narcotic/blood , Cell Line , Gene Expression/drug effects , Humans , Hypogonadism/blood , Ibuprofen/blood , In Vitro Techniques , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Middle Aged , Prostaglandins/biosynthesis , Sertoli Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL