Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38684055

ABSTRACT

Alkaline fuel cells rely on the movement of hydroxide anions (OH-) for their operation, yet these anions face challenges in efficient conduction due to their limited diffusion coefficient and substantial mass compared to proton (H+) transport. Within the covalent organic framework structure, ordered channels offer a promising solution for the OH- ion transport. Herein, we synthesized a cationic covalent organic framework (vTAPA) via the solvothermal-assisted Zincke reaction. vTAPA showcases excellent stability in harsh basic solution (12 M) and a wide range of pH. This framework facilitates OH- conduction through its one-dimensional network through the anion exchange process. We employed various tertiary ammonium salts (tetramethyl, tetraethyl, and tetrabutyl ammonium hydroxide) to exchange trapped anionic chloride ions inside the vTAPA structure with OH- ions. The density functional theory (DFT) study exhibited that the anion exchange process is very favorable, as the vTAPA framework offers preferable interaction sites for OH- ions. The impact of steric hindrance from these tertiary ammonium salts on the OH- conduction performance was extensively investigated. Butyl@vTAPA exhibited a high OH- ion conductivity of 1.05 × 10-4 S cm-1 at 90 °C under 98% relative humidity (RH). Our uniquely designed cationic covalent organic frameworks (COF) created a platform for a preferential transport network of hydroxide ions, and this is the first report of directly used COFs for hydroxide ion conduction without any vigorous postsynthetic modification.

2.
Nanoscale ; 16(11): 5665-5673, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38312071

ABSTRACT

Bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are the heart of metal-air batteries, fuel cells, and other energy storage systems. Here, we report a series of a novel class of redox-active viologen-based ionic covalent organic networks (vCONs) which are directly used as metal-free bifunctional electrocatalysts towards ORR and OER applications. These vCONs (named vGC, vGAC, vMEL and vBPDP) were synthesized by the well-known Zincke reaction. The installation of redox-active viologen moieties among the extended covalent organic architectures played a crucial role for exceptional acid/base stability, as well as bifunctional ORR and OER activities, confirmed by the cyclic voltammetry (CV) curves. Among all of them, vBPDP showed high ORR efficiency with a half-wave potential of 0.72 V against a reversible hydrogen electrode (RHE) in 1 M KOH electrolyte. In contrast, vMEL demonstrated high OER activity with an overpotential of 320 mV at a current density of 10 mAcm-2 and a Tafel slope of 109.4 mV dec-1 in 1 M KOH electrolyte solution. This work is exceptional and unique in terms of directly used pristine ionic covalent organic networks that are used as bifunctional (ORR and OER) electrocatalysts without adding any metals or conductive materials.

4.
Quant Imaging Med Surg ; 13(12): 7706-7718, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106308

ABSTRACT

Background: Metastatic complications are a major cause of cancer-related morbidity, with up to 40% of cancer patients experiencing at least one brain metastasis. Earlier detection may significantly improve patient outcomes and overall survival. We investigated machine learning (ML) models for early detection of brain metastases based on diffusion weighted imaging (DWI) radiomics. Methods: Longitudinal diffusion imaging from 116 patients previously treated with stereotactic radiosurgery (SRS) for brain metastases were retrospectively analyzed. Clinical contours from 600 metastases were extracted from radiosurgery planning computed tomography, and rigidly registered to corresponding contrast enhanced-T1 and apparent diffusion coefficient (ADC) maps. Contralateral contours located in healthy brain tissue were used as control. The dataset consisted of (I) radiomic features using ADC maps, (II) radiomic feature change calculated using timepoints before the metastasis manifested on contrast enhanced-T1, (III) primary cancer, and (IV) anatomical location. The dataset was divided into training and internal validation sets using an 80/20 split with stratification. Four classification algorithms [Linear Support Vector Machine (SVM), Random Forest (RF), AdaBoost, and XGBoost] underwent supervised classification training, with contours labeled either 'control' or 'metastasis'. Hyperparameters were optimized towards balanced accuracy. Various model metrics (receiver operating characteristic curve area scores, accuracy, recall, and precision) were calculated to gauge performance. Results: The radiomic and clinical data set, feature engineering, and ML models developed were able to identify metastases with an accuracy of up to 87.7% on the training set, and 85.8% on an unseen test set. XGBoost and RF showed superior accuracy (XGBoost: 0.877±0.021 and 0.833±0.47, RF: 0.823±0.024 and 0.858±0.045) for training and validation sets, respectively. XGBoost and RF also showed strong area under the receiver operating characteristic curve (AUC) performance on the validation set (0.910±0.037 and 0.922±0.034, respectively). AdaBoost performed slightly lower in all metrics. SVM model generalized poorly with the internal validation set. Important features involved changes in radiomics months before manifesting on contrast enhanced-T1. Conclusions: The proposed models using diffusion-based radiomics showed encouraging results in differentiating healthy brain tissue from metastases using clinical imaging data. These findings suggest that longitudinal diffusion imaging and ML may help improve patient care through earlier diagnosis and increased patient monitoring/follow-up. Future work aims to improve model classification metrics, robustness, user-interface, and clinical applicability.

5.
Radiother Oncol ; 188: 109859, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604278

ABSTRACT

PURPOSE: To determine whether a system to estimate Absolute Percentage of Biopsied Tissue Positive for Gleason Pattern 4 (eAPP4) is useful as a prognostication tool for patients with intermediate risk prostate cancer (IR-PCa) undergoing low dose rate prostate brachytherapy. METHODS: 497 patients with IR-PCa and known grade group 2 or 3 disease treated with low dose rate seed brachytherapy (LDR-BT) at a quaternary cancer centre were retrospectively reviewed. Prostate biopsies for each patient included Gleason grading with synoptic reporting that did not include percentage of pattern 4 disease found within the sample. Each core was assigned a grade grouping, however, and that was used with optimized estimates of percentage of pattern four disease to estimate eAPP4. Outcomes including cumulative incidence of recurrence (CIR), treatment of recurrent disease (RRX), and metastasis-free survival (MFS) were then reviewed and the prognostic value of eAPP4 evaluated. RESULTS: 428 (86%) patients had Gleason grade group 2 and 69 (14%) patients had Gleason grade group 3 disease. 230 (46%) patients had National Comprehensive Cancer Network (NCCN) favourable intermediate at baseline, while 267 (54%) of patients had NCCN unfavourable intermediate at baseline. Median follow-up was 7.3 (5.5-9.6) years. eAPP4 was predictive of CIR (p = 0.003), RRX (p = 0.003), or MFS (p = 0.001) events, while Gleason grade grouping alone was not. eAPP4 was strongest as a predictor for MFS when estimates of 30% (grade group 2) and 80% (grade group 3) were used [HR 1.07 (1.03-1.12); p = 0.001]. CONCLUSIONS: eAPP4 was strongly predictive of recurrence and metastasis-free survival in a large cohort of patients receiving LDR-BT treatment for IR-PCa. Treatment of future patients with IR-PCa could include the use of eAPP4 prognostication.

6.
BMC Cancer ; 22(1): 1368, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36585629

ABSTRACT

BACKGROUND: Postoperative stereotactic radiosurgery (SRS) is a standard management option for patients with resected brain metastases. Preoperative SRS may have certain advantages compared to postoperative SRS, including less uncertainty in delineation of the intact tumor compared to the postoperative resection cavity, reduced rate of leptomeningeal dissemination postoperatively, and a lower risk of radiation necrosis. The recently published ASCO-SNO-ASTRO consensus statement provides no recommendation for the preferred sequencing of radiotherapy and surgery for patients receiving both treatments for their brain metastases. METHODS: This multicenter, randomized controlled trial aims to recruit 88 patients with resectable brain metastases over an estimated three-year period. Patients with ten or fewer brain metastases with at least one resectable, fulfilling inclusion criteria will be randomized to postoperative SRS (standard arm) or preoperative SRS (investigational arm) in a 1:1 ratio. Randomization will be stratified by age (< 60 versus ≥60 years), histology (melanoma/renal cell carcinoma/sarcoma versus other), and number of metastases (one versus 2-10). In the standard arm, postoperative SRS will be delivered within 3 weeks of surgery, and all unresected metastases will receive primary SRS. In the investigational arm, enrolled patients will receive SRS of all brain metastases followed by surgery of resectable metastases within one week of SRS. In either arm, single fraction or hypofractionated SRS in three or five fractions is permitted. The primary endpoint is to assess local control at 12 months in both arms. Secondary endpoints include local control at other time points, regional/distant brain recurrence rates, leptomeningeal recurrence rates, overall survival, neurocognitive outcomes, and adverse radiation events including radiation necrosis rates in both arms. DISCUSSION: This trial addresses the unanswered question of the optimal sequencing of surgery and SRS in the management of patients with resectable brain metastases. No randomized data comparing preoperative and postoperative SRS for patients with brain metastases has been published to date. TRIAL REGISTRATION: Clinicaltrials.gov , NCT04474925; registered on July 17, 2020. Protocol version 1.0 (January 31, 2020). SPONSOR: Alberta Health Services, Edmonton, Canada (Samir Patel, MD).


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Middle Aged , Radiosurgery/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain/pathology , Necrosis/etiology , Alberta , Treatment Outcome
7.
Mol Immunol ; 141: 328-337, 2022 01.
Article in English | MEDLINE | ID: mdl-34953281

ABSTRACT

Recently unfolded mechanisms showed lipid droplet helps in pathogen survival and paralyzes host immune response. In the present study, we showed the extent of lipid droplet(LD) generation in Leishmania donovani infection, the signaling involved, and their function concerning pathogenicity. RAW 264.7 and J774A.1 cells were used to infect with L. donovani and then flow cytometry and confocal microscopy were used to detect lipid droplet generation and subsequent assays. In this study, we showed that L. donovani AG83 (AG83/MHOM/1983) triggers lipid droplet formation in macrophages in a time-dependent manner. We provide novel insight into the signaling molecules which is responsible for LD accumulation. Interestingly, LPG deficient attenuated Leishmania strain UR6 (UR6/MHOM/1978) failed to fuel LD generation. But inhibition of phagosome maturation drastically stimulates LD accumulation in UR6 infected MΦs. Aspirin treatment in AG83 infected MΦs does not only lower LD load but also favors phagolysosome biogenesis and corrects cytokine balance. Employing strategies to circumvent halt in phagosome maturation using drugs that manipulate lipid droplet generation could be used as a therapeutic tool to resist parasite growth in the early hour of infection.


Subject(s)
Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/metabolism , Lipid Droplets/metabolism , MAP Kinase Signaling System/physiology , Macrophages/metabolism , Animals , Cell Line , Cytokines/metabolism , Mice , Phagocytosis/physiology , RAW 264.7 Cells
8.
Nanoscale ; 13(2): 1248-1256, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33404576

ABSTRACT

In the bilayer ReS2 channel of a field-effect transistor (FET), we demonstrate using Raman spectroscopy that electron doping (n) results in softening of frequency and broadening of linewidth for the in-plane vibrational modes, leaving the out-of-plane vibrational modes unaffected. The largest change is observed for the in-plane Raman mode at ∼151 cm-1, which also shows doping induced Fano resonance with the Fano parameter 1/q = -0.17 at a doping concentration of ∼3.7 × 1013 cm-2. A quantitative understanding of our results is provided by first-principles density functional theory (DFT), showing that the electron-phonon coupling (EPC) of in-plane modes is stronger than that of out-of-plane modes, and its variation with doping is independent of the layer stacking. The origin of large EPC is traced to 1T to 1T' structural phase transition of ReS2 involving in-plane displacement of atoms whose instability is driven by the nested Fermi surface of the 1T structure. Results are compared with those of the isostructural trilayer ReSe2.

9.
Nanotechnology ; 32(4): 045202, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33036010

ABSTRACT

Understanding of electron-phonon coupling (EPC) in two-dimensional (2D) materials manifesting as phonon renormalization is essential to their possible applications in nanoelectronics. Here we report in situ Raman measurements of electrochemically top-gated 2, 3 and 7 layered 2H-MoTe2 channel based field-effect transistors. While the [Formula: see text] and B2g phonon modes exhibit frequency softening and linewidth broadening with hole doping concentration (p) up to ∼2.3 × 1013/cm2, A1g shows relatively small frequency hardening and linewidth sharpening. The dependence of frequency renormalization of the [Formula: see text] mode on the number of layers in these 2D crystals confirms that hole doping occurs primarily in the top two layers, in agreement with recent predictions. We present first-principles density functional theory analysis of bilayer MoTe2 that qualitatively captures our observations, and explain that a relatively stronger coupling of holes with [Formula: see text] or B2g modes as compared with the A1g mode originates from the in-plane orbital character and symmetry of the states at valence band maximum. The contrast between the manifestation of EPC in monolayer MoS2 and those observed here in a few-layered MoTe2 demonstrates the role of the symmetry of phonons and electronic states in determining the EPC in these isostructural systems.

10.
Cell Death Dis ; 11(9): 774, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943608

ABSTRACT

Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.


Subject(s)
Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis , Caspases/metabolism , Cell Movement , Cell Survival , Cytochromes c/metabolism , Disease Progression , Enzyme Activation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Inflammation , Intramolecular Oxidoreductases/antagonists & inhibitors , Isoxazoles/pharmacology , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Morpholines/pharmacology , Neoplasm Metastasis , Neoplasm Transplantation , Treatment Outcome , Triple Negative Breast Neoplasms/pathology , Wound Healing
11.
Nanoscale ; 12(15): 8371-8378, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32238996

ABSTRACT

Bulk 1T'-MoTe2 shows a structural phase transition from the 1T' to Weyl semimetallic (WSM) Td phase at ∼240 K. This phase transition and transport properties in the two phases have not been investigated on ultra-thin crystals. Here we report electrical transport, 1/f noise and Raman studies on ultra-thin 1T'-MoTe2 (∼5 to 16 nm thick) field-effect transistor (FETs) devices as a function of temperature. The electrical resistivities for a thickness of 16 nm and 11 nm show maxima at temperatures of 208 K and 178 K, respectively, making a transition from the semiconducting to semi-metallic phase, hitherto not observed in bulk samples. Raman frequencies and linewidths for an 11 nm thick crystal show a change around 178 K, attributed to the additional contribution to the phonon self-energy due to the enhanced electron-phonon interaction in the WSM phase. Furthermore, the resistivity at low temperature shows an upturn below 20 K along with the maximum in the power spectral density of the low frequency 1/f noise. The latter rules out the metal-insulator transition (MIT) being responsible for the upturn of resistivity below 20 K. The low temperature resistivity follows ρ∝ 1/T, changing to ρ∝T with increasing temperature supports electron-electron interaction physics at electron-hole symmetric Weyl nodes below 20 K. These observations will pave the way to unravel the properties of the WSM state in layered ultra-thin van der Waals materials.

12.
Adv Exp Med Biol ; 1162: 51-61, 2019.
Article in English | MEDLINE | ID: mdl-31332734

ABSTRACT

The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.


Subject(s)
Cannabinoids/pharmacology , Neoplasms , Receptors, Cannabinoid/physiology , Signal Transduction , Apoptosis , Humans , Neoplasm Metastasis , Tumor Microenvironment
13.
Toxicol In Vitro ; 58: 207-214, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30930231

ABSTRACT

Lipid droplets (LD) are newly characterized dynamic cytoplasmic organelle which is the storehouse of different immunosuppressive cytokines and enzymes like cyclooxygenase and lipoxygenase. Tumors are known to modulate the immune system by immune-editing the microenvironment. Immuno-editing comprises of three steps namely cancer immune-surveillance, tumor dormancy and finally escape leading to tumor development. The latency of the tumor microenvironment is greatly contributed by the M2 polarized macrophages and TGF-ß is a prime culprit. Modulating M2 macrophages to M1 can be a strategy against tumor progression. We found that tumor-conditioned medium or recombinant TGF-ß was efficient to induce LD formation in Raw264.7 cells and the inhibition of LD was associated with the switch of M2 to M1 phenotype involving MEK1/2 axis. Signature molecules of M2 polarized macrophages like CD206 were also downregulated while co-stimulatory molecules like CD80, CD86 were up-regulated along with enhanced surface expression of MHCII when these macrophages were subjected to C75 treatment to reduce the LD formation. The level of pro-inflammatory cytokine, as well as ROS and NO generation, were also increased when TGF-ß treated macrophages were subjected to C75 treatment. This study is probably the first report of this kind and can be used in the future in cancer treatment.


Subject(s)
Cytokines/immunology , Lipid Droplets/immunology , Macrophages/immunology , Neoplasms/immunology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Phenotype , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , THP-1 Cells , Tumor Microenvironment/immunology
14.
Toxicol In Vitro ; 55: 24-32, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30453006

ABSTRACT

The natural anti-cancer agent bromelain is found to be beneficial for either single or multi-targeted therapy in gastric and skin carcinoma, by inhibiting cancer cell growth. Importantly, the presence of peroxidase enhances its biological efficiency. We have now evaluated a panel of cancer cell lines with bromelain in presence or absence of peroxidase to identify that the combination has higher apoptosis inducing potential in all those cell lines. Bromelain plus peroxidase (BM-PR) inhibited acute myeloid (K562) cell proliferation and altered the morphological features. Incidence of apoptosis was established by using annexin V exposure and this was confirmed that the cell cycle was arrested at G0/G1 phase in a concentration-dependent manner. BM-PR increased the intracellular ROS level and altered the mitochondrial membrane potential, as detected using dichlorofluores cin diacetate (DCFDA). It also regulated the expression of apoptosis-related proteins like Bax, Bcl2, caspase-3 and cytochrome besides causing up-regulation of p53 as determined by western blot analysis. These results suggest that BM-PR from pineapple induces apoptosis better than only bromelain in acute myeloid leukemia cells possibly via mitochondria dependent pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Bromelains/pharmacology , Leukemia/drug therapy , Peroxidase/pharmacology , Ananas , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Leukemia/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Reactive Oxygen Species/metabolism
15.
J Mol Biol ; 431(2): 368-390, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30458172

ABSTRACT

Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that signal in response to collagen. We had previously shown that collagen binding leads to clustering of DDR1b, a process partly mediated by its extracellular domain (ECD). In this study, we investigated (i) the impact of the oligomeric state of DDR2 ECD on collagen binding and fibrillogenesis, (ii) the effect of collagen binding on DDR2 clustering, and (iii) the spatial distribution and phosphorylation status of DDR1b and DDR2 after collagen stimulation. Studies were conducted using purified recombinant DDR2 ECD proteins in monomeric, dimeric or oligomeric state, and MC3T3-E1 cells expressing full-length DDR2-GFP or DDR1b-YFP. We show that the oligomeric form of DDR2 ECD displayed enhanced binding to collagen and inhibition of fibrillogenesis. Using atomic force and fluorescence microscopy, we demonstrate that unlike DDR1b, DDR2 ECD and DDR2-GFP do not undergo collagen-induced receptor clustering. However, after prolonged collagen stimulation, both DDR1b-YFP and DDR2-GFP formed filamentous structures consistent with spatial re-distribution of DDRs in cells. Immunocytochemistry revealed that while DDR1b clusters co-localized with non-fibrillar collagen, DDR1b/DDR2 filamentous structures associated with collagen fibrils. Antibodies against a tyrosine phosphorylation site in the intracellular juxtamembrane region of DDR1b displayed positive signals in both DDR1b clusters and filamentous structures. However, only the filamentous structures of both DDR1b and DDR2 co-localized with antibodies directed against tyrosine phosphorylation sites within the receptor kinase domain. Our results uncover key differences and similarities in the clustering abilities and spatial distribution of DDR1b and DDR2 and their impact on receptor phosphorylation.


Subject(s)
Collagen Type I/metabolism , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 2/metabolism , Phosphorylation/physiology , 3T3 Cells , Animals , Binding Sites/physiology , Cell Line , Cell Membrane/metabolism , Cluster Analysis , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Mice , Protein Binding/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/metabolism , Signal Transduction/physiology , Tyrosine/metabolism
16.
Leuk Res ; 70: 79-86, 2018 07.
Article in English | MEDLINE | ID: mdl-29902707

ABSTRACT

Lysosomes are the most acidic vesicles within mammalian cells and are promising targets for the treatment of breast cancer, glioblastomas and acute myeloid leukemia (AML). Our previous studies have shown that chronic lymphocytic leukemia (CLL) cells are also sensitive to lysosome disruption and cell death, by siramesine or chemotherapy. In the present study, we screened the antimalarial drugs, mefloquine, atovaquone, primaquine, and tafenoquine, for their effects on lysosome disruption and cytotoxicity in primary CLL cells. We found that mefloquine and tafenoquine could permeabilize lysosome membranes and induce cell death at doses that are clinically achievable. In contrast, these agents had less effect on normal B cells. Tafenoquine was most effective at inducing cell death, and this was associated with increased formation of reactive oxygen species (ROS) and lipid peroxidation. Addition of ROS scavengers blocked both tafenoquine- and mefloquine-induced cell death. Moreover, blocking the activity of cathepsins released from the lysosomes decreased tafenoquine-induced cell death. Taken together, lysosome disruption using antimalarial drugs is a novel approach for the treatment of CLL.


Subject(s)
Antimalarials/pharmacology , Cell Death/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Lysosomes/metabolism , Humans , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Sphingolipids/metabolism , Stromal Cells/metabolism , Tumor Cells, Cultured
17.
Food Chem Toxicol ; 105: 322-336, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28478100

ABSTRACT

Ipomoea aquatica Forssk. (Convolvulaceae) is an aquatic vegetable traditionally employed against toxic effects of xenobiotics. The present study has been designed to investigate the molecular mechanism underlying the beneficial role of the edible (aqueous) leaf extract of I. aquatica (AEIA) against doxorubicin (Dox)-induced liver injury. AEIA exhibited a dose-dependent (∼400 µg/ml) increase in cell viability against Dox (1 µM) in isolated rodent hepatocytes. AEIA (400 µg/ml) prevented the Dox-induced increase in ROS, redox imbalance, and activation of mitogen activated protein kinases (MAPK) and intrinsic pathway of apoptosis in hepatocytes. In the in vivo assay, administration of AEIA (100 mg/kg, p.o.) against Dox (3 mg/kg, i.p.) also reduced the oxidative impairment, DNA fragmentation, ATP formation, and up-regulated the mitochondrial co-enzymes Qs in the liver tissues of Wistar rats. Histological assessments were in agreement with the biochemical findings. Substantial quantities of phyto-antioxidants in AEIA may mediate its beneficial function against Dox-induced liver injury.


Subject(s)
Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Doxorubicin/adverse effects , Ipomoea/chemistry , MAP Kinase Signaling System/drug effects , Plant Extracts/administration & dosage , Plant Leaves/chemistry , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Humans , Liver/drug effects , Liver/injuries , Liver/metabolism , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
18.
Biochem Res Int ; 2016: 3137010, 2016.
Article in English | MEDLINE | ID: mdl-27293892

ABSTRACT

Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma.

19.
Cell Physiol Biochem ; 38(4): 1303-18, 2016.
Article in English | MEDLINE | ID: mdl-27010918

ABSTRACT

BACKGROUND/AIMS: Cytotoxic effect of attenuated Leishmania on liver cancer cells by inducing ROS generation. METHODS: Spectrophotometric study to analyze cell death and levels of different active caspases. Flow cytometric study was done to analyze apoptosis induction and ROS generation and levels of different protein. Western blot analysis was performed to study the levels of protein. Confocal microscopy was done to ascertain the expression of different apoptotic markers. RESULTS: We have now observed that attenuated Leishmania donovani UR6 also has potentiality towards growth inhibition of HepG2 cells and investigated the mechanism of action. The effect is associated with increased DNA fragmentation, rise in number of annexinV positive cells, and cell cycle arrest at G1 phase. The detection of unregulated levels of active PARP, cleaved caspases 3 and 9, cytosolic cytochrome C, Bax, and Bad, along with the observed downregulation of Bcl-2 and loss of mitochondrial membrane potential suggested the involvement of mitochondrial pathway. Enhanced ROS and p53 levels regulate the apoptosis of HepG2 cells. NAC was found to inhibit p53 production but PFT-α has no effect on ROS generation. In conclusion, Leishmania donovani UR6 efficiently induces apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. CONCLUSION: It has been reported earlier that some parasites show prominent cytotoxic effect and prevent tumor growth. From our study we found that Leishmania donovani UR6 efficiently induced apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. This study has rejuvenated the age old idea of bio-therapy.


Subject(s)
Apoptosis , Leishmania/pathogenicity , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylcysteine/pharmacology , Calcium/metabolism , Caspase 3/analysis , Caspase 3/metabolism , Caspase 9/analysis , Caspase 9/metabolism , Cytochromes c/metabolism , DNA Fragmentation , Down-Regulation , G1 Phase Cell Cycle Checkpoints , Hep G2 Cells , Hot Temperature , Humans , Membrane Potential, Mitochondrial , Proto-Oncogene Proteins c-bcl-2/metabolism , Up-Regulation/drug effects , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/metabolism
20.
Sci Rep ; 6: 22335, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26928472

ABSTRACT

Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future.


Subject(s)
Leishmania donovani/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis/prevention & control , Macrophages/immunology , Phagosomes/metabolism , Animals , Inflammation Mediators/metabolism , Leishmania donovani/growth & development , Leishmaniasis/immunology , Macrophages/parasitology , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Oxidative Stress , RAW 264.7 Cells , Vaccines, Attenuated , Vacuolar Proton-Translocating ATPases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...