Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Food Waterborne Parasitol ; 33: e00212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38028241

ABSTRACT

The protozoan parasites Cryptosporidium parvum, Cyclospora cayetanensis, and Toxoplasma gondii are major causes of waterborne and foodborne diseases worldwide. The assessment of their removal or inactivation during water treatment and food processing remains challenging, partly because research on these parasites is hindered by various economical, ethical, methodological, and biological constraints. To address public health concerns and gain new knowledge, researchers are increasingly seeking alternatives to the use of such pathogenic parasites. Over the past few decades, several non-pathogenic microorganisms and manufactured microparticles have been evaluated as potential surrogates of waterborne and foodborne protozoan parasites. Here, we review the surrogates that have been reported for C. parvum, C. cayetanensis, and T. gondii oocysts, and discuss their use and relevance to assess the transport, removal, and inactivation of these parasites in food and water matrices. Biological surrogates including non-human pathogenic Eimeria parasites, microorganisms found in water sources (anaerobic and aerobic spore-forming bacteria, algae), and non-biological surrogates (i.e. manufactured microparticles) have been identified. We emphasize that such surrogates have to be carefully selected and implemented depending on the parasite and the targeted application. Eimeria oocysts appear as promising surrogates to investigate in the future the pathogenic coccidian parasites C. cayetanensis and T. gondii that are the most challenging to work with.

2.
Environ Microbiol Rep ; 15(6): 597-613, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37740249

ABSTRACT

A series of laboratory experiments were conducted to study the fate and transport of Toxoplasma gondii oocysts in soils as a function of soil physicochemical properties and soil water chemistry properties. Soil columns were homogeneously packed with loamy sand soils (Lewiston and Greenson series) and sandy loam soils (Sparta and Gilford series), and subject to hydrologic conditions characterized by the absence and presence of an anionic surfactant-Aerosol 22 in the artificial rainfall. Quantitative polymerase chain reaction (qPCR) was utilized for the detection and enumeration of oocysts in soil leachates to evaluate their breakthrough and in soil matrices to examine their spatial distribution. Differences in the rate and extent of transport of oocysts were observed as a function of physical and chemical parameters tested. The breakthrough of oocysts was observed for all the soils irrespective of the presence of surfactant. However, in the absence of surfactant, the predominant fate of oocysts in soils subject to simulated rainfall was their retention in the soil profile. The presence of surfactant induced a change in the fate of oocysts in these soils exposed to rainfall simulation as the predominant fate of oocysts was found to be in the soil leachates.


Subject(s)
Surface-Active Agents , Toxoplasma , Animals , Hazardous Substances , Soil , Water , Oocysts
3.
Parasite ; 28: 68, 2021.
Article in English | MEDLINE | ID: mdl-34617883

ABSTRACT

Toxoplasma gondii oocysts are responsible for food- and water-borne infections in humans worldwide. They are resistant to common chemical disinfectants, including chlorinated products, presumably due to the structure and molecular nature of the oocyst wall but also the sporocyst wall. In this study, we used fluorescence microscopy and transmission electron microscopy to characterise the structure of both the oocyst and sporocyst walls, exposed to household bleach. Bleach removed the outer layer of the oocyst wall and the outer layer of the wall of sporocysts exposed due to rupture of the oocyst wall. The loss of the outer sporocyst wall layer was associated with a decrease in its autofluorescence, which can be linked to the degradation of dityrosine cross-link proteins, and loss of Maclura pomifera lectin-reactive glycoproteins. This study suggests that the inner layers of the oocyst and sporocyst walls are the main structures responsible for the resistance of the parasite to household bleach.


TITLE: Effet de l'eau de Javel à usage domestique sur la structure de la paroi du sporocyste de Toxoplasma gondii. ABSTRACT: Les oocystes de Toxoplasma gondii sont responsables chez l'homme d'infections cosmopolites d'origine alimentaire et hydrique. Ils sont résistants aux désinfectants chimiques usuels, notamment aux produits chlorés, vraisemblablement en raison de la structure et de la nature moléculaire de la paroi de l'oocyste mais aussi de celle du sporocyste. Dans cette étude, nous avons utilisé la microscopie à fluorescence et la microscopie électronique à transmission pour caractériser la structure de la paroi des oocystes et des sporocystes exposés à l'eau de Javel à usage domestique. L'eau de Javel élimine la couche externe de la paroi de l'oocyste et la couche externe de la paroi des sporocystes exposés en raison de la rupture de la paroi de l'oocyste. La perte de la couche externe de la paroi du sporocyste est associée à une diminution de son autofluorescence, qui peut être liée à la dégradation de polymères protéiques de dityrosine, et à une perte des glycoprotéines réactives à la lectine Maclura pomifera. Cette étude suggère que les couches internes des parois de l'oocyste et du sporocyste sont les principales structures responsables de la résistance du parasite à l'eau de Javel à usage domestique.


Subject(s)
Oocysts/drug effects , Sodium Hypochlorite/pharmacology , Toxoplasma , Glycoproteins , Microscopy, Fluorescence , Toxoplasma/drug effects
4.
Article in English | MEDLINE | ID: mdl-32509593

ABSTRACT

Oocysts are the environmentally resistant stage of the protozoan parasite Toxoplasma gondii. They are responsible for foodborne infections in humans and animals worldwide. Infectious oocysts contain sporozoites that have to exit the sporocyst and oocyst walls to initiate replication of the parasite within the host tissues. Given their robustness and resistance to chemical degradation, it is still unclear how the oocyst and sporocyst walls release the sporozoites. This process called excystation is thought to occur in the small intestine as a result of the combined action of digestive agents, yet to be identified. By using an oocyst-macrophage co-culture platform, we previously demonstrated in vitro that the excystation of sporozoites and their differentiation into replicative tachyzoites could occur in absence of digestive factors, following phagocytosis by macrophages. Here, we further characterize the dynamics of the oocyst phagocytosis at the single-cell level by using optical tweezers and micropipette aspiration techniques. Our results show that the oocyst internalization kinetics can vary among a given population of macrophages, but similar processes and dynamics could be observed. Most of the cells manipulate oocysts for ~15 min before internalizing them in typically 30 min. This process mainly involves the actin cytoskeleton of the macrophages. Liberated sporozoites within macrophages then differentiate into tachyzoites within 4-6 h following oocyst-macrophage contact. Tachyzoites appear to develop better in macrophages challenged with free sporocysts or sporozoites than with whole oocysts, suggesting that opening of the oocyst wall is one of the most limiting steps for sporozoite excystation completion.


Subject(s)
Macrophages , Oocysts , Phagocytosis , Toxoplasma , Animals , Humans , Sporozoites
5.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31399406

ABSTRACT

Toxoplasma gondii is a ubiquitous foodborne protozoan that can infect humans at low dose and displays different prevalences among countries in the world. Ingestion of food or water contaminated with small amounts of T. gondii oocysts may result in human infection. However, there are no regulations for monitoring oocysts in food, mainly because of a lack of standardized methods to detect them. The objectives of this study were (i) to develop a reliable method, applicable in biomonitoring, for the rapid detection of infectious oocysts by cell culture of their sporocysts combined with quantitative PCR (sporocyst-CC-qPCR) and (ii) to adapt this method to blue and zebra mussels experimentally contaminated by oocysts with the objective to use these organisms as sentinels of aquatic environments. Combining mechanical treatment and bead beating leads to the release of 84% ± 14% of free sporocysts. The sporocyst-CC-qPCR detected fewer than ten infectious oocysts in water within 4 days (1 day of contact and 3 days of cell culture) compared to detection after 4 weeks by mouse bioassay. For both mussel matrices, oocysts were prepurified using a 30% Percoll gradient and treated with sodium hypochlorite before cell culture of their sporocysts. This assay was able to detect as few as ten infective oocysts. This sporocyst-based CC-qPCR appears to be a good alternative to mouse bioassay for monitoring infectious T. gondii oocysts directly in water and also using biological sentinel mussel species. This method offers a new perspective to assess the environmental risk for human health associated with this parasite.IMPORTANCE The ubiquitous protozoan Toxoplasma gondii is the subject of renewed interest due to the spread of oocysts in water and food causing endemic and epidemic outbreaks of toxoplasmosis in humans and animals worldwide. Displaying a sensitivity close to animal models, cell culture represents a real alternative to assess the infectivity of oocysts in water and in biological sentinel mussels. This method opens interesting perspectives for evaluating human exposure to infectious T. gondii oocysts in the environment, where oocyst amounts are considered to be very small.


Subject(s)
Oocysts/genetics , Oocysts/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Toxoplasma/genetics , Toxoplasma/isolation & purification , Toxoplasmosis/parasitology , Animals , Biological Assay , Bivalvia , Cell Culture Techniques/methods , DNA, Protozoan/analysis , Disease Models, Animal , Environmental Monitoring , Female , Food , Mice , Water/parasitology , Waterborne Diseases/parasitology
6.
Parasitol Res ; 118(3): 999-1010, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30729299

ABSTRACT

Information on the viability of Toxoplasma gondii oocysts is crucial to establish the public health significance of this environmental transmission stage that can contaminate water and foods. Interest for molecular-based methods to assess viability is growing and the aim of our study was to assess, for the first time, a propidium monoazide (PMA)-qPCR approach to determine the viability of T. gondii oocysts. Untreated and heat-killed (99 °C, 5 min) oocysts were incubated with PMA, a photoreactive DNA binding dye, and analyzed by confocal microscopy and flow cytometry to characterize oocysts' dye permeability. Different PMA concentrations (50 to 150 µM), incubation temperatures (22, 37, and 45 °C), amplicon length, selected targeted gene, and dyes (PMA, PMAxx™) were evaluated to define optimal conditions to discriminate specifically viable oocysts by PMA-qPCR. In theory, PMA binding to DNA would inhibit PCR amplification in dead but not in viable oocysts. Incubation at 22 °C with 100 µM PMA coupled to qPCR targeting a 123-bp sequence of the 529-bp repeat element allowed the distinction between viable and heated oocysts. However, the reduction of viability following heating of oocysts at high temperature was slight and, contrarily to reverse transcriptase-qPCR, the qPCR signal was not totally suppressed in heated suspensions. Therefore, PMA-qPCR is able to assess the impact of heating on T. gondii oocysts' viability but underestimates the efficacy of this treatment. The relevance of this technique to evaluate the efficacy of other inactivation processes and assess exposure of humans to this pathogen requires further investigations.


Subject(s)
Azides/chemistry , Oocysts/isolation & purification , Polymerase Chain Reaction/methods , Propidium/analogs & derivatives , Toxoplasma/isolation & purification , Coloring Agents , Humans , Microbial Viability , Propidium/chemistry , Staining and Labeling , Toxoplasma/physiology
7.
Cell Surf ; 5: 100016, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743133

ABSTRACT

Toxoplasma gondii is a coccidian parasite with the cat as its definitive host but any warm-blooded animal, including humans, may act as intermediate hosts. It has a worldwide distribution where it may cause acute and chronic toxoplasmosis. Infection can result from ingestion either of tissue cysts in infected meat of intermediate hosts or oocysts found in cat faeces via contaminated water or food. In this review, we highlight how the oocyst and sporocyst walls sustain the persistence and transmission of infective T. gondii parasites from terrestrial and aquatic environments to the host. We further discuss why targeting the oocyst wall structure and molecules may reduce the burden of foodborne and waterborne T. gondii infections.

8.
Food Waterborne Parasitol ; 15: e00049, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32095620

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.

9.
Parasite ; 25: 14, 2018.
Article in English | MEDLINE | ID: mdl-29553366

ABSTRACT

Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.


TITLE: Estimation de la viabilité et infectiosité des stades (kystes et oocystes) de Giardia duodenalis, Cryptosporidium spp. et Toxoplasma gondii transmis par la nourriture et l'eau : une revue des méthodes. ABSTRACT: Giardia duodenalis, Cryptosporidium spp. et Toxoplasma gondii sont des parasites protozoaires qui ont été soulignés comme agents pathogènes émergents dans les aliments par l'Organisation des Nations Unies pour l'alimentation et l'agriculture et l'Organisation Mondiale de la Santé. Selon l'Autorité Européenne de Sécurité des Aliments, 4786 épidémies d'origine alimentaire et hydrique ont été enregistrées en Europe en 2016, dont 0.4% ont été attribuées à des parasites, incluant Cryptosporidium, Giardia et Trichinella. Jusqu'en 2016, aucune méthode standardisée n'était disponible pour détecter les kystes de Giardia et les oocystes de Cryptosporidium et Toxoplasma dans les aliments. Aucune réglementation n'est donc proposée concernant ces dangers. Cependant, compte tenu de leur faible dose infectieuse, l'ingestion d'une quantité d'aliments faiblement contaminés peut entraîner une infection de l'homme. Pour évaluer le risque lié aux protozoaires dans les aliments, des efforts doivent être faits dans l'évaluation de l'exposition pour estimer la contamination le long de la chaîne alimentaire, depuis la matière première jusqu'aux consommateurs. Cette évaluation nécessite de déterminer : (i) la prévalence de parasites infectieux dans les aliments, (ii) l'efficacité des mesures de maîtrise pour éliminer cette contamination. Pour mener une telle évaluation, des méthodes capables d'identifier des parasites viables (vivants) et infectieux sont requises. Cette revue décrit les méthodes actuellement disponibles permettant d'évaluer l'infectiosité et la viabilité des kystes de G. duodenalis et des oocystes de Cryptosporidium spp. et T. gondii, et leur potentiel pour être appliquées dans l'évaluation de l'exposition pour déterminer la présence de parasites infectieux et/ou caractériser l'efficacité des mesures de maîtrise. Les avantages et limites de chaque méthode sont présentés et une stratégie d'analyses est proposée pour évaluer l'exposition à ces protozoaires.


Subject(s)
Cryptosporidium/physiology , Food Parasitology/methods , Giardia lamblia/physiology , Toxoplasma/physiology , Water/parasitology , Animals , Biological Assay/methods , Cells, Cultured/parasitology , Cryptosporidiosis/parasitology , Cryptosporidiosis/prevention & control , Cryptosporidium/pathogenicity , Genetic Techniques , Giardia lamblia/pathogenicity , Giardiasis/parasitology , Giardiasis/prevention & control , Humans , Oocysts/pathogenicity , Oocysts/physiology , Risk Assessment , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology , Toxoplasmosis/prevention & control
10.
Sci Rep ; 6: 33654, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27641141

ABSTRACT

Toxoplasma gondii is a common parasite of humans and animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The robust oocyst and sporocyst walls protect the infective sporozoites from deleterious external attacks including disinfectants. Upon oocyst acquisition, these walls lose their integrity to let the sporozoites excyst and invade host cells following a process that remains poorly understood. Given the resistance of the oocyst wall to digestive enzymes and the ability of oocysts to cause parenteral infections, the present study investigated the possible contribution of macrophages in supporting sporozoite excystation following oocyst internalisation. By using single cell micromanipulations, real-time and time-point imaging techniques, we demonstrated that RAW macrophages could interact rapidly with oocysts and engulfed them by remodelling of their actin cytoskeleton. Internalised oocysts were associated to macrophage acidic compartments and showed evidences of wall disruption. Sporozoites were observed in macrophages containing oocyst remnants or in new macrophages, giving rise to dividing tachyzoites. All together, these results highlight an unexpected role of phagocytic cells in processing T. gondii oocysts, in line with non-classical routes of infection, and open new perspectives to identify chemical factors that lead to oocyst wall disruption under physiological conditions.


Subject(s)
Macrophages/physiology , Macrophages/parasitology , Oocysts/metabolism , Sporozoites/physiology , Toxoplasma , Actins/metabolism , Animals , Cell Communication , Cell Line , Coculture Techniques , Cytoplasmic Granules/metabolism , Macrophages/ultrastructure , Mice , Oocysts/ultrastructure , Phagocytosis , Sporozoites/ultrastructure , Toxoplasma/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/transmission
11.
Food Microbiol ; 57: 36-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27052700

ABSTRACT

Toxoplasma gondii, Cryptosporidium spp. and Giardia intestinalis are emerging pathogen parasites in the food domain. However, without standardized methods for their detection in food matrices, parasitic foodborne outbreaks remain neglected. In this study, a new immunomagnetic separation assay (IMS Toxo) targeting the oocyst's wall of T. gondii was developed using a specific purified monoclonal antibody. Performance of this IMS Toxo coupled to microscopic and qPCR analyses was evaluated in terms of limit of detection (LOD) and recovery rate (RR) on: i) simple matrix (LOD = 5 oocysts; RR between 5 and 56%); ii) raspberries and basil (LOD = 33 oocysts/g; RR between 0.2 and 35%). Finally, to simultaneously extract the three protozoa from these food matrices, T. gondii oocysts were directly concentrated (without IMS Toxo) from the supernatant of the IMS of Cryptosporidium and Giardia (oo)cysts. This strategy associated to qPCR detection led to LOD <1 to 3 (oo)cysts/g and RR between 2 and 35%. This procedure was coupled to RT-qPCR analyses and showed that the three protozoa persisted on the leaves of basil and remained viable following storage at 4 °C for 8 days. These data strengthen the need to consider these protozoa in food safety.


Subject(s)
Cryptosporidium/isolation & purification , Giardia/isolation & purification , Ocimum basilicum/parasitology , Rubus/parasitology , Toxoplasma/isolation & purification , Cryptosporidium/genetics , Cryptosporidium/growth & development , Food Contamination/analysis , Giardia/genetics , Giardia/growth & development , Oocysts/growth & development , Plant Leaves/parasitology , Toxoplasma/genetics , Toxoplasma/growth & development
12.
Eur J Med Chem ; 95: 16-28, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25791675

ABSTRACT

A preliminary in vitro screening of compounds belonging to various chemical families from our library revealed the thieno[3,2-d]pyrimidin-4(3H)-one scaffold displayed a promising profile against Plasmodium falciparum. Then, 120 new derivatives were synthesized and evaluated in vitro; compared to drug references, 40 showed good activity toward chloroquine sensitive (IC50 35-344 nM) and resistant (IC50 45-800 nM) P. falciparum strains. They were neither cytotoxic (CC50 15-50 µM) toward HepG2 and CHO cells, nor mutagenic. Structure-activity relationships were defined. The lead-compound also appeared active against the Plasmodium liver stages (Plasmodium yoelii IC50 = 35 nM) and a preliminary in vivo evaluation indicated the in vitro activity was preserved (45% reduction in parasitemia compared to untreated infected mice). A mechanistic study demonstrated these molecules do not involve any of the pathways described for commercial drugs and exert a specific activity on the ring and trophozoite stages.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Erythrocytes/drug effects , Liver/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Animals , Antimalarials/chemistry , CHO Cells , Cell Proliferation/drug effects , Cricetinae , Cricetulus , Hep G2 Cells , Humans , Malaria/parasitology , Male , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum/growth & development , Structure-Activity Relationship , Trophozoites/drug effects
13.
J Microbiol Methods ; 95(3): 320-3, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24055386

ABSTRACT

We validated a new method, based on luciferine/luciferase bioluminescence, for drug screening on promastigotes of different Leishmania species. Results obtained with this new, rapid, reproducible, and reliable method are in good accordance with results obtained by the conventional MTT assay. This bioluminescence assay has a lower detection limit.


Subject(s)
Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Leishmania/drug effects , Luminescent Measurements/methods , Firefly Luciferin/metabolism , Luciferases, Firefly/analysis , Reproducibility of Results , Sensitivity and Specificity
14.
J Food Prot ; 76(9): 1649-57, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23992514

ABSTRACT

Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.


Subject(s)
Cryptosporidium/isolation & purification , Food Contamination/analysis , Food Parasitology , Giardia/isolation & purification , Mollusca/parasitology , Toxoplasma/isolation & purification , Animals , Consumer Product Safety , Cryptosporidium/classification , Giardia/classification , Humans , Public Health , Risk Assessment , Toxoplasma/classification
15.
Proc Natl Acad Sci U S A ; 110(28): 11535-40, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23798399

ABSTRACT

The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from harsh environmental conditions until their ingestion by the host. None of the common disinfectants are effective in killing the parasite because the oocyst wall acts as a primary barrier to physical and chemical attacks. Here, we address the structure and chemistry of the wall of the T. gondii oocyst by combining wall surface treatments, fluorescence imaging, EM, and measurements of its mechanical characteristics by using atomic force microscopy. Elasticity and indentation measurements indicated that the oocyst wall resembles common plastic materials, based on the Young moduli, E, evaluated by atomic force microscopy. Our study demonstrates that the inner layer is as robust as the bilayered wall itself. Besides wall mechanics, our results suggest important differences regarding the nonspecific adhesive properties of each layer. All together, these findings suggest a key biological role for the oocyst wall mechanics in maintaining the integrity of the T. gondii oocysts in the environment or after exposure to disinfectants, and therefore their potential infectivity to humans and animals.


Subject(s)
Cell Wall/physiology , Oocysts/physiology , Toxoplasma/physiology , Animals , Cell Wall/ultrastructure , Microscopy, Atomic Force , Microscopy, Fluorescence , Oocysts/ultrastructure
16.
Mini Rev Med Chem ; 13(9): 1340-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23746057

ABSTRACT

Plasmodium falciparum has a specific metabolism of particular interest because several of its features, with respect to the host human ones, are potential pharmacological targets. Such features have been more intensely investigated since 2002, thanks to the full sequencing of the genome of P. falciparum. In this review, we are interested in the potential metabolic targets of therapeutic interest identified and investigated over the past decade in terms of lead-to-drug development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/metabolism , Animals , Plasmodium falciparum/drug effects
17.
Phytother Res ; 27(2): 278-84, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22566106

ABSTRACT

Stephania rotunda (Menispermaceae), a creeper commonly found in the mountainous areas of Cambodia, has been mainly used for the treatment of fever and malaria. Thus, the aim of this study is to investigate the chemical composition and antiplasmodial activity of different samples of S. rotunda and compare their antiplasmodial activity with their alkaloid content. Sixteen samples from different parts (roots, stem, and tuber) of S. rotunda were collected from four regions of Cambodia (Battambang, Pailin, Siem Reap, and Kampot). Reversed-phase HPLC was used to determine the content of three bioactive alkaloids (cepharanthine, tetrahydropalmatine, and xylopinine). These three alkaloids have been found in all samples from Battambang and Pailin (samples I-IX), whereas only tetrahydropalmatine was present in samples from Siem Reap and Kampot (samples X-XVI). The analyzed extracts were evaluated for their antiplasmodial activity on W2 strain of Plasmodium falciparum. Among them, 13 extracts were significantly active with inhibitory concentration 50 (IC(50) ) from 1.2 to 3.7 µg/mL and 2 extracts were moderately active (IC(50) = 6.1 and 10 µg/mL, respectively), whereas sample XI was not active (IC(50) = 19.6 µg/mL). A comparison between antiplasmodial activity and concentration of the three bioactive alkaloids in S. rotunda extracts has been realized.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Stephania/chemistry , Antimalarials/isolation & purification , Benzylisoquinolines/isolation & purification , Benzylisoquinolines/pharmacology , Berberine Alkaloids/isolation & purification , Berberine Alkaloids/pharmacology , Cambodia , Chromatography, High Pressure Liquid , Humans , Inhibitory Concentration 50 , K562 Cells
18.
J Ethnopharmacol ; 145(1): 381-5, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23127648

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Stephania rotunda Lour. (Menispermaceae) is a creeper growing in many countries of Asia and commonly found in the mountainous areas of Cambodia. As a folk medicine, it has been mainly used for the treatment of fever and malaria. The pharmacological activity is mostly due to alkaloids. Thus the aim of this study is to isolate new bioactive alkaloids from Stephania rotunda and to evaluate their in vitro antiplasmodial activity. MATERIALS AND METHODS: Alkaloids were isolated and identified from dichloromethane and aqueous extracts using a combination of flash chromatography, high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The purified compounds were tested for in vitro antiplasmodial activity on chloroquine-resistant W2 strain of Plasmodium falciparum. RESULTS: A new aporphine alkaloid named vireakine (2) along with two known alkaloids stephanine (1) and pseudopalmatine (8), described for the first time in Stephania rotunda, and together five known alkaloids tetrahydropalmatine (3), xylopinine (4), roemerine (5), cepharanthine (6) and palmatine (7) were isolated and identified. The structure of the new alkaloid was established on the basis of 1D and 2D NMR experiments and mass spectrometry. The compounds were evaluated for their in vitro antiplasmodial and cytotoxic activities. All tested compounds showed significant antiplasmodial activities with IC(50) ranged from 1.2 µM to 52.3 µM with a good selectivity index for pseudopalmatine with IC(50) of 2.8 µM against W2 strain of Plasmodium falciparum and IC(50)>25 µM on K562S cells. CONCLUSIONS: This study provides evidence to support the use of Stephania rotunda for the treatment of malaria and/or fever by the healers. Alkaloids of the tuber exhibited antiplasmodial activity and particularly cepharanthine and pseudopalmatine.


Subject(s)
Alkaloids/pharmacology , Antimalarials/pharmacology , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Stephania/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Antimalarials/chemistry , Antimalarials/isolation & purification , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , K562 Cells , Molecular Structure , Parasitic Sensitivity Tests/methods , Plant Extracts/chemistry
19.
Molecules ; 17(7): 8105-17, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22766802

ABSTRACT

We report herein a simple and efficient two-step synthetic approach to new 2-trichloromethylquinazolines possessing a variously substituted sulfonamide group at position 4 used to prepare new quinazolines with antiparasitic properties. Thus, an original series of 20 derivatives was synthesized, which proved to be less-toxic than previously synthesized hits on the human HepG2 cell line, but did not display significant antiplasmodial activity. A brief Structure-Activity Relationship (SAR) evaluation shows that a more restricted conformational freedom is probably necessary for providing antiplasmodial activity.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Antimalarials/chemistry , Cell Death/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Quinazolines/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
20.
Appl Environ Microbiol ; 78(15): 5127-32, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22582074

ABSTRACT

Toxoplasma gondii oocysts spread in the environment are an important source of toxoplasmosis for humans and animal species. Although the life expectancy of oocysts has been studied through the infectivity of inoculated soil samples, the survival dynamics of oocysts in the environment are poorly documented. The aim of this study was to quantify oocyst viability in soil over time under two rain conditions. Oocysts were placed in 54 sentinel chambers containing soil and 18 sealed water tubes, all settled in two containers filled with soil. Containers were watered to simulate rain levels of arid and wet climates and kept at stable temperature for 21.5 months. At nine sampling dates during this period, we sampled six chambers and two water tubes. Three methods were used to measure oocyst viability: microscopic counting, quantitative PCR (qPCR), and mouse inoculation. In parallel, oocysts were kept refrigerated during the same period to analyze their detectability over time. Microscopic counting, qPCR, and mouse inoculation all showed decreasing values over time and highly significant differences between the decreases under dry and damp conditions. The proportion of oocysts surviving after 100 days was estimated to be 7.4% (95% confidence interval [95% CI] = 5.1, 10.8) under dry conditions and 43.7% (5% CI = 35.6, 53.5) under damp conditions. The detectability of oocysts by qPCR over time decreased by 0.5 cycle threshold per 100 days. Finally, a strong correlation between qPCR results and the dose infecting 50% of mice was found; thus, qPCR results may be used as an estimate of the infectivity of soil samples.


Subject(s)
Oocysts/physiology , Polymerase Chain Reaction/methods , Soil/parasitology , Toxoplasma , Animals , Biological Assay/methods , DNA Primers/genetics , Mice , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...