Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026730

ABSTRACT

Background: Cardiac allograft vasculopathy (CAV), a diffuse thickening of the intima of the coronary arteries and microvasculature, is the leading cause of late graft failure and mortality after heart transplantation (HT). Diagnosis involves invasive coronary angiography, which carries substantial risk, and minimally-invasive approaches to CAV diagnosis are urgently needed. Using single-cell RNA-sequencing in peripheral blood mononuclear cells (PBMCs), we sought to identify cell-specific gene expression profiles in CAV. Methods: Whole blood was collected from 22 HT recipients with angiographically-confirmed CAV and 18 HT recipients without CAV. PBMCs were isolated and subjected to single-cell RNA-sequencing using a 10X Genomics microfluidic platform. Downstream analyses focused on differential expression of genes, cell compositional changes, and T cell receptor repertoire analyses. Results: Across 40 PBMC samples, we isolated 134,984 cells spanning 8 major clusters and 31 subclusters of cell types. Compositional analyses showed subtle, but significant increases in CD4+ T central memory cells, and CD14+ and CD16+ monocytes in high-grade CAV (CAV-2 and CAV-3) as compared to low-grade or absent CAV. After adjusting for age, gender, and prednisone use, 745 genes were differentially expressed in a cell-specific manner in high-grade CAV. Weighted gene co-expression network analyses showed enrichment for putative pathways involved in inflammation and angiogenesis. There were no significant differences in T cell clonality or diversity with increasing CAV severity. Conclusions: Unbiased whole transcriptomic analyses at single-cell resolution identify unique, cell-specific gene expression patterns in CAV, suggesting the potential utility of peripheral gene expression biomarkers in diagnosing CAV.

2.
Metabolism ; 158: 155955, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906372

ABSTRACT

OBJECTIVES: Bariatric surgery improves metabolic health, but the underlying mechanisms are not fully understood. We analyzed the effects of two types of bariatric surgery, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), on the plasma metabolome and lipidome. METHODS: We characterized the plasma metabolome (1268 metabolites) and lipidome (953 lipids) pre-operatively and at 3 and 12 months post-operatively in 104 obese adults who were previously recruited to a prospective cohort of bariatric surgery. The metabolomic and lipidomic responses to bariatric surgery over time were analyzed using multivariable linear mixed-effects models. RESULTS: There were significant changes in multiple metabolites and lipids, including rapid early changes in amino acid and peptide metabolites, including decreases in branched-chain amino acids (BCAAs), aromatic AAs, alanine and aspartate, and increases in glycine, serine, arginine and citrulline. There were also significant decreases in many triglyceride species, with increases in phosphatidylcholines and phosphatidylethanolamines. There were significant changes in metabolites related to energy metabolism that were apparent only after 12 months. We observed differences by bariatric surgery type in the changes in a small number of primary and secondary bile acids, including glycohyocholate and glyco-beta-muricholate. CONCLUSIONS: Our findings highlight the comprehensive changes in metabolites and lipids that occur over the 12 months following bariatric surgery. While both SG and RYGB caused profound changes in the metabolome and lipidome, RYGB was characterized by greater increases in bile acids following surgery.


Subject(s)
Gastrectomy , Gastric Bypass , Metabolome , Weight Loss , Humans , Male , Female , Adult , Metabolome/physiology , Weight Loss/physiology , Middle Aged , Lipidomics , Obesity, Morbid/surgery , Obesity, Morbid/blood , Obesity, Morbid/metabolism , Prospective Studies , Lipids/blood , Obesity/surgery , Obesity/metabolism , Obesity/blood
3.
J Am Heart Assoc ; 13(12): e033674, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38860398

ABSTRACT

BACKGROUND: Extracellular microRNAs (miRNAs) are a class of noncoding RNAs that remain stable in the extracellular milieu, where they contribute to various physiological and pathological processes by facilitating intercellular signaling. Previous studies have reported associations between miRNAs and cardiovascular diseases (CVDs); however, the plasma miRNA signatures of CVD and its risk factors have not been fully elucidated at the population level. METHODS AND RESULTS: Plasma miRNA levels were measured in 4440 FHS (Framingham Heart Study) participants. Linear regression analyses were conducted to test the cross-sectional associations of each miRNA with 8 CVD risk factors. Prospective analyses of the associations of miRNAs with new-onset obesity, hypertension, type 2 diabetes, CVD, and all-cause mortality were conducted using proportional hazards regression. Replication was carried out in 1999 RS (Rotterdam Study) participants. Pathway enrichment analyses were conducted and target genes were predicted for miRNAs associated with ≥5 risk factors in the FHS. In the FHS, 6 miRNAs (miR-193b-3p, miR-122-5p, miR-365a-3p, miR-194-5p, miR-192-5p, and miR-193a-5p) were associated with ≥5 risk factors. This miRNA signature was enriched for pathways associated with CVD and several genes annotated to these pathways were predicted targets of the identified miRNAs. Furthermore, miR-193b-3p, miR-194-5p, and miR-193a-5p were each associated with ≥2 risk factors in the RS. Prospective analysis revealed 8 miRNAs associated with all-cause mortality in the FHS. CONCLUSIONS: These findings highlight associations between miRNAs and CVD risk factors that may provide valuable insights into the underlying pathogenesis of CVD.


Subject(s)
Cardiovascular Diseases , Heart Disease Risk Factors , MicroRNAs , Humans , Male , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Female , Middle Aged , Aged , MicroRNAs/blood , MicroRNAs/genetics , Prospective Studies , Cross-Sectional Studies , Risk Assessment , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Risk Factors , Biomarkers/blood , Age Factors
4.
Proteomics ; 24(16): e2300607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38783781

ABSTRACT

In this study, we sought to compare protein concentrations obtained from a high-throughput proteomics platform (Olink) on samples collected using capillary blood self-collection (with the Tasso+ device) versus standard venipuncture (control). Blood collection was performed on 20 volunteers, including one sample obtained via venipuncture and two via capillary blood using the Tasso+ device. Tasso+ samples were stored at 2°C-8°C for 24-hs (Tasso-24) or 48-h (Tasso-48) prior to processing to simulate shipping times from a study participant's home. Proteomics were analyzed using Olink (384 Inflammatory Panel). Tasso+ blood collection was successful in 37/40 attempts. Of 230 proteins included in our analysis, Pearson correlations (r) and mean coefficient of variation (CV) between Tasso-24 or Tasso-48 versus venipuncture were variable. In the Tasso-24 analysis, 34 proteins (14.8%) had both a correlation r > 0.5 and CV < 0.20. In the Tasso-48 analysis, 68 proteins (29.6%) had a correlation r > 0.5 and CV < 0.20. Combining the Tasso-24 and Tasso-48 analyses, 26 (11.3%) proteins met these thresholds. We concluded that protein concentrations from Tasso+ samples processed 24-48 h after collection demonstrated wide technical variability and variable correlation with a venipuncture gold-standard. Use of home capillary blood self-collection for large-scale proteomics should be limited to select proteins with good agreement with venipuncture.


Subject(s)
Blood Specimen Collection , Proteomics , Humans , Proteomics/methods , Blood Specimen Collection/methods , Male , Adult , Female , Phlebotomy/methods , Blood Proteins/analysis , High-Throughput Screening Assays/methods , Middle Aged
5.
Cell Rep Med ; 5(5): 101548, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703763

ABSTRACT

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.


Subject(s)
Body Mass Index , Weight Gain , Humans , Male , Female , Adult , Obesity/metabolism , Obesity/genetics , Young Adult , Metabolomics , Energy Metabolism , Proteomics/methods , Gastrointestinal Microbiome , Metabolome
6.
Arterioscler Thromb Vasc Biol ; 44(4): 969-975, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385288

ABSTRACT

BACKGROUND: Preeclampsia is a hypertensive disorder of pregnancy characterized by widespread vascular inflammation. It occurs frequently in pregnancy, often without known risk factors, and has high rates of maternal and fetal morbidity and mortality. Identification of biomarkers that predict preeclampsia and its cardiovascular sequelae before clinical onset, or even before pregnancy, is a critical unmet need for the prevention of adverse pregnancy outcomes. METHODS: We explored differences in cardiovascular proteomics (Olink Explore 384) in 256 diverse pregnant persons across 2 centers (26% Hispanic, 21% Black). RESULTS: We identified significant differences in plasma abundance of markers associated with angiogenesis, blood pressure, cell adhesion, inflammation, and metabolism between individuals delivering with preeclampsia and controls, some of which have not been widely described previously and are not represented in the preeclampsia placental transcriptome. While we observed a broadly similar pattern in early (<34 weeks) versus late (≥34 weeks) preeclampsia, several proteins related to hemodynamic stress, hemostasis, and immune response appeared to be more highly dysregulated in early preeclampsia relative to late preeclampsia. CONCLUSIONS: These results demonstrate the value of performing targeted proteomics using a panel of cardiovascular biomarkers to identify biomarkers relevant to preeclampsia pathophysiology and highlight the need for larger multiomic studies to define modifiable pathways of surveillance and intervention upstream to preeclampsia diagnosis.


Subject(s)
Cardiovascular Diseases , Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/diagnosis , Placenta , Pregnancy Outcome , Biomarkers , Inflammation/complications , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/complications , Placenta Growth Factor
8.
Circ Genom Precis Med ; 17(1): e004192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323454

ABSTRACT

BACKGROUND: The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS: We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS: In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS: A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.


Subject(s)
Diabetes Mellitus, Type 2 , Proteomics , Humans , Female , Young Adult , Adult , Male , Adipose Tissue , Inflammation , Biomarkers/metabolism
9.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889181

ABSTRACT

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Subject(s)
Heart Failure , Humans , Female , Male , Stroke Volume/physiology , Pilot Projects , Proteomics , Phenotype , Oxygen/metabolism , Exercise Test/methods , Exercise Tolerance/physiology
10.
Am J Transplant ; 23(8): 1256-1263, 2023 08.
Article in English | MEDLINE | ID: mdl-37156299

ABSTRACT

Cardiac allograft vasculopathy (CAV) is a leading cause of late graft failure and mortality after heart transplantation (HT). Sharing some features with atherosclerosis, CAV results in diffuse narrowing of the epicardial coronaries and microvasculature, with consequent graft ischemia. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular disease and mortality. We aimed to investigate the relationship between CHIP and posttransplant outcomes, including CAV. We analyzed 479 HT recipients with stored DNA samples at 2 high-volume transplant centers, Vanderbilt University Medical Center and Columbia University Irving Medical Center. We explored the association between the presence of CHIP mutations with CAV and mortality after HT. In this case-control analysis, carriers of CHIP mutations were not at increased risk of CAV or mortality after HT. In a large multicenter genomics study of the heart transplant population, the presence of CHIP mutations was not associated with an increased risk of CAV or posttransplant mortality.


Subject(s)
Heart Diseases , Heart Transplantation , Vascular Diseases , Humans , Clonal Hematopoiesis/genetics , Heart Transplantation/adverse effects , Vascular Diseases/etiology , Risk Factors , Allografts
12.
Obesity (Silver Spring) ; 31(1): 150-158, 2023 01.
Article in English | MEDLINE | ID: mdl-36334095

ABSTRACT

OBJECTIVE: Weight regain occurs after medical weight loss via mechanisms of post-weight-loss "metabolic adaptation." The relationship of inflammatory proteins with weight loss/regain was studied to determine a role for inflammation in metabolic adaptation. METHODS: Seventy-four proteins central to inflammation and immune regulation (Olink) were analyzed in plasma from up to 490 participants in a trial of medical weight-loss maintenance. Cross-sectional and longitudinal associations of proteins with weight were measured using linear and mixed effects regression models and t testing, with replication in the Framingham Heart Study. RESULTS: Broad changes in the inflammatory proteome were observed among the study cohort (60% women, 35% African American) with initial weight loss of ≈8 kg from a median 94 kg at study entry (33/74 proteins; 7 increased; 26 decreased), many of which tracked with weight regain of median ≈2 kg over the next 30 months. Ten proteins were associated with different rates of weight regain, some specifying pathways of chemotaxis and innate immune responses. Several of the observed protein associations were also linked to prevalent obesity in the Framingham Heart Study. CONCLUSIONS: Broad changes in the inflammatory proteome track with changes in weight and may identify specific pathways that modify patterns of weight regain.


Subject(s)
Proteome , Weight Gain , Female , Humans , Male , Cross-Sectional Studies , Inflammation , Obesity/metabolism , Weight Gain/physiology , Weight Loss/physiology
13.
Sci Rep ; 12(1): 16220, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171215

ABSTRACT

MicroRNAs (miRNAs) are a family of noncoding, functional RNAs. With recent developments in molecular biology, miRNA detection has attracted significant interest, as hundreds of miRNAs and their expression levels have shown to be linked to various diseases such as infections, cardiovascular disorders and cancers. A powerful and high throughput tool for nucleic acid detection is the DNA microarray technology. However, conventional methods do not meet the demands in sensitivity and specificity, presenting significant challenges for the adaptation of miRNA detection for diagnostic applications. In this study, we developed a highly sensitive and multiplexed digital microarray using plasmonic gold nanorods as labels. For proof of concept studies, we conducted experiments with two miRNAs, miRNA-451a (miR-451) and miRNA-223-3p (miR-223). We demonstrated improvements in sensitivity in comparison to traditional end-point assays that employ capture on solid phase support, by implementing real-time tracking of the target molecules on the sensor surface. Particle tracking overcomes the sensitivity limitations for detection of low-abundance biomarkers in the presence of low-affinity but high-abundance background molecules, where endpoint assays fall short. The absolute lowest measured concentration was 100 aM. The measured detection limit being well above the blank samples, we performed theoretical calculations for an extrapolated limit of detection (LOD). The dynamic tracking improved the extrapolated LODs from femtomolar range to [Formula: see text] 10 attomolar (less than 1300 copies in 0.2 ml of sample) for both miRNAs and the total incubation time was decreased from 5 h to 35 min.


Subject(s)
MicroRNAs , Neoplasms , Gold , Humans , MicroRNAs/genetics
14.
J Am Heart Assoc ; 11(18): e025517, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36073647

ABSTRACT

Heart failure remains among the most common and morbid health conditions. The Heart Failure Strategically Focused Research Network (HF SFRN) was funded by the American Heart Association to facilitate collaborative, high-impact research in the field of heart failure across the domains of basic, clinical, and population research. The Network was also charged with developing training opportunities for young investigators. Four centers were funded in 2016: Duke University, University of Colorado, University of Utah, and Massachusetts General Hospital-University of Massachusetts. This report summarizes the aims of each center and major research accomplishments, as well as training outcomes from the HF SFRN.


Subject(s)
Heart Failure , American Heart Association , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Massachusetts , Research Design , United States
15.
Circ Res ; 131(1): 4-5, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35737756
16.
Diabetologia ; 65(4): 657-674, 2022 04.
Article in English | MEDLINE | ID: mdl-35041022

ABSTRACT

AIMS/HYPOTHESIS: The aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development. METHODS: We studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts. RESULTS: We identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07). CONCLUSIONS/INTERPRETATION: Selected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adult , Aged , Cohort Studies , Coronary Vessels , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , Young Adult
17.
Res Pract Thromb Haemost ; 5(5): e12532, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34296056

ABSTRACT

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) was hosted virtually from Philadelphia July 17-21, 2021. The conference, now held annually, highlighted cutting-edge advances in basic, population and clinical sciences of relevance to the Society. Despite being held virtually, the 2021 congress was of the same scope and quality as an annual meeting held in person. An added feature of the program is that talks streamed at the designated times will then be available on-line for asynchronous viewing. The program included 77 State of the Art (SOA) talks, thematically grouped in 28 sessions, given by internationally recognized leaders in the field. The SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. The topics, across the main scientific themes of the congress, include Arterial Thromboembolism, Coagulation and Natural Anticoagulants, COVID-19 and Coagulation, Diagnostics and Omics, Fibrinogen, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostasis in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Angiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the congress.

19.
Circulation ; 144(2): 159-169, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33876947

ABSTRACT

While we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic "buckets." Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased "omic" approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.


Subject(s)
Cardiovascular Diseases/drug therapy , Drug Discovery/methods , Humans
20.
Eur Heart J ; 42(15): 1464-1475, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33847746

ABSTRACT

Whilst we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic 'buckets'. Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased 'omic' approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.


Subject(s)
Cardiovascular Diseases , Pharmaceutical Preparations , Biomarkers , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Drug Discovery , Humans
SELECTION OF CITATIONS
SEARCH DETAIL