Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 23(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110915

ABSTRACT

A series of eight new 5-aryl-benzo[f][1,7]naphthyridines were synthesized in 17 to 64% overall yields via an improved MW-assisted cascade-like one pot process (Ugi⁻three component reaction/intramolecular aza-Diels-Alder cycloaddition) coupled to an aromatization process from tri-functional dienophile-containing ester-anilines, substituted benzaldehydes and the chain-ring tautomerizable 2-isocyano-1-morpholino-3-phenylpropan-1-one as starting reagents, under mild conditions. The doubly activated dienophile and the aza-diene functionalities of the eight new Ugi-adducts were exploited to perform an in situ aza-Diels-Alder cycloaddition/aromatization (dehydration/oxidation) process, toward the complex polysubstituted 5-aryl-polyheterocycles, which could be taken as starting point for further SAR studies because the benzo[f][1,7]naphthyridine is the core of various bioactive products. It is relevant to emphasize that the synthesis or isolation of benzo[f][1,7]naphthyridines containing a substituted aromatic ring in the C-5 position, has not been published before.


Subject(s)
Cyclization , Cycloaddition Reaction , Naphthyridines/chemical synthesis , Combinatorial Chemistry Techniques , Microwaves , Molecular Structure , Naphthyridines/chemistry
2.
Molecules ; 20(10): 19463-88, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512642

ABSTRACT

The entrapping of physicochemical active molecules inside mesoporous networks is an appealing field of research due to the myriad of potential applications in optics, photocatalysis, chemical sensing, and medicine. One of the most important reasons for this success is the possibility of optimizing the properties that a free active species displays in solution but now trapped inside a solid substrate. Additionally it is possible to modulate the textural characteristics of substrates, such as pore size, specific surface area, polarity and chemical affinity of the surface, toward the physical or chemical adhesion of a variety of adsorbates. In the present document, two kinds of non-silicon metal alkoxides, Zr and Ti, are employed to prepare xerogels containing entrapped tetrapyrrolic species that could be inserted beforehand in analogue silica systems. The main goal is to develop efficient methods for trapping or binding tetrapyrrole macrocycles inside TiO2 and ZrO2 xerogels, while comparing the properties of these systems against those of the SiO2 analogues. Once the optimal synthesis conditions for obtaining translucent monolithic xerogels of ZrO2 and TiO2 networks were determined, it was confirmed that these substrates allowed the entrapment, in monomeric form, of macrocycles that commonly appear as aggregates within the SiO2 network. From these experiments, it could be determined that the average pore diameters, specific surface areas, and water sorption capacities depicted by each one of these substrates, are a consequence of their own nature combined with the particular structure of the entrapped tetrapyrrole macrocycle. Furthermore, the establishment of covalent bonds between the intruding species and the pore walls leads to the obtainment of very similar pore sizes in the three different metal oxide (Ti, Zr, and Si) substrates as a consequence of the templating effect of the encapsulated species.


Subject(s)
Silicon Dioxide/chemistry , Tetrapyrroles/chemistry , Titanium/chemistry , Zirconium/chemistry , Gels , Indoles/chemistry , Isoindoles , Phase Transition , Porosity , Spectrophotometry, Ultraviolet , Surface Properties , Water/chemistry
3.
Molecules ; 19(2): 2261-85, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24566303

ABSTRACT

A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network. The paper shows clear evidence of the real possibility of maximizing fluorescence emissions from metal-free bases of substituted tetraphenylporphyrins, especially when these molecules are bonded to the walls of functionalized silica surfaces via the attachment of alkyl or aryl groups arising from the addition of organo-modified alkoxides.


Subject(s)
Oxides/chemistry , Porphyrins/chemistry , Silicon Dioxide/chemistry , Absorption , Fluorescence , Gels , Metals/chemistry , Surface Properties
4.
J Food Sci ; 78(4): M560-6, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23488765

ABSTRACT

The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.


Subject(s)
Anti-Infective Agents/pharmacology , Food Packaging/methods , Glucose Oxidase/pharmacology , Hydrophobic and Hydrophilic Interactions , Milk Proteins/pharmacology , Nisin/pharmacology , Anti-Infective Agents/isolation & purification , Bacillus/drug effects , Bacillus/growth & development , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Contamination/prevention & control , Food Microbiology , Listeria/drug effects , Listeria/growth & development , Meat/microbiology , Milk Proteins/isolation & purification , Vegetables/microbiology , Whey Proteins
5.
Molecules ; 18(1): 588-653, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23292327

ABSTRACT

The crossed and linked histories of tetrapyrrolic macrocycles, interwoven with new research discoveries, suggest that Nature has found in these structures a way to ensure the continuity of life. For diverse applications porphyrins or phthalocyanines must be trapped inside solid networks, but due to their nature, these compounds cannot be introduced by thermal diffusion; the sol-gel method makes possible this insertion through a soft chemical process. The methodologies for trapping or bonding macrocycles inside pristine or organo-modified silica or inside ZrO2 xerogels were developed by using phthalocyanines and porphyrins as molecular probes. The sizes of the pores formed depend on the structure, the cation nature, and the identities and positions of peripheral substituents of the macrocycle. The interactions of the macrocyclic molecule and surface Si-OH groups inhibit the efficient displaying of the macrocycle properties and to avoid this undesirable event, strategies such as situating the macrocycle far from the pore walls or to exchange the Si-OH species by alkyl or aryl groups have been proposed. Spectroscopic properties are better preserved when long unions are established between the macrocycle and the pore walls, or when oligomeric macrocyclic species are trapped inside each pore. When macrocycles are trapped inside organo-modified silica, their properties result similar to those displayed in solution and their intensities depend on the length of the alkyl chain attached to the matrix. These results support the prospect of tuning up the pore size, surface area, and polarity inside the pore cavities in order to prepare efficient catalytic, optical, sensoring, and medical systems. The most important feature is that research would confirm again that tetrapyrrolic macrocycles can help in the development of the authentic pore engineering in materials science.


Subject(s)
Photosensitizing Agents/history , Tetrapyrroles/history , Gels , History, 19th Century , History, 20th Century , Phase Transition , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porosity , Tetrapyrroles/chemical synthesis , Tetrapyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL