Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.452
Filter
1.
Orthop Surg ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135273

ABSTRACT

OBJECTIVE: A robotic system was recently introduced to improve prosthetic alignment during total knee arthroplasty (TKA). The purpose of this multicenter, prospective, randomized controlled trial (RCT) was to determine whether robotic-arm-assisted TKA improves clinical and radiological outcomes when compared to conventional TKA. METHODS: One hundred and thirty patients who underwent primary TKA were enrolled in this prospective, randomized controlled trial, which was conducted at three hospitals. Five patients were lost to follow-up 6 weeks after surgery. Therefore, 125 participants (63 in the intervention group and 62 in the control group) remained in the final analysis. The primary outcome was the rate at which the mechanical axis of the femur deviated by less than 3° from the mechanical axis of the tibia. This was evaluated by full-length weight-bearing X-rays of the lower limb 6 weeks postoperatively. Secondary outcomes included operation times, 6-week postoperative functional outcomes evaluated by the American Knee Society score (KSS) and the Western Ontario and McMaster Universities osteoarthritis index (WOMAC), short form-36 (SF-36) health survey results, and the occurrence of adverse events (AEs) and serious adverse events (SAEs). RESULTS: At 6 weeks postoperatively, we found that the rate of radiographic inliers was significantly higher in the intervention group (78.7% vs 51.6%; p = 0.00; 95% confidence interval, 10.9% to 43.2%). The operation was significantly longer in the intervention group than in the control group (119.5 vs 85.0 min; p = 0.00). There were no significant differences in the 6-week postoperative functional outcomes, SF-36, AEs, and SAEs between the two groups. There were no AEs or SAEs that were determined to be "positively related" to the robotic system. CONCLUSION: Robotic-arm-assisted TKA is safe and effective, as demonstrated in this trial.

2.
Front Pharmacol ; 15: 1379821, 2024.
Article in English | MEDLINE | ID: mdl-39092227

ABSTRACT

Diabetic kidney disease (DKD) is characterized by complex pathogenesis and poor prognosis; therefore, an exploration of novel etiological factors may be beneficial. Despite glycemic control, the persistence of transient hyperglycemia still induces vascular complications due to metabolic memory. However, its contribution to DKD remains unclear. Using single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) database, we clustered 12 cell types and employed enrichment analysis and a cell‒cell communication network. Fibrosis, a characteristic of DKD, was found to be associated with metabolic memory. To further identify genes related to metabolic memory and fibrosis in DKD, we combined the above datasets from humans with a rat renal fibrosis model and mouse models of metabolic memory. After overlapping, NDRG1, NR4A1, KCNC4 and ZFP36 were selected. Pharmacology analysis and molecular docking revealed that pioglitazone and resveratrol were possible agents affecting these hub genes. Based on the ex vivo results, NDRG1 was selected for further study. Knockdown of NDRG1 reduced TGF-ß expression in human kidney-2 cells (HK-2 cells). Compared to that in patients who had diabetes for more than 10 years but not DKD, NDRG1 expression in blood samples was upregulated in DKD patients. In summary, NDRG1 is a key gene involved in regulating fibrosis in DKD from a metabolic memory perspective. Bioinformatics analysis combined with experimental validation provided reliable evidence for identifying metabolic memory in DKD patients.

3.
Heliyon ; 10(12): e32513, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994088

ABSTRACT

Introduction: The reconstruction of both extra- and intra-oral soft tissue defects, particularly in restoring the morphology of the lip and the corners of the mouth, has posed a significant challenge for surgeons. Inappropriate methods often lead to maxillofacial deformity which then causes psychological and functional problems. This study aimed to address the challenge of reconstructing extensive and complex maxillofacial soft tissue defects, mainly focusing on the lip, the corners of the mouth, and the surrounding areas. Materials and methods: We developed a reconstruction approach by combining the 3dMDface System (3dMD) with the cone beam computed tomography (CBCT). Firstly, with the extra-oral incision line, we evaluated the shape and the size of the extra-oral defect with 3dMD digitally. Then we used the corresponding maxillary and mandible tooth positions to record the intra-oral defect, which was then converted to digital images by combining 3dMD and CBCT. The islands of the anterolateral thigh perforator flap were then designed after the locations of the perforators were detected with Doppler ultrasonography. Results: A clinical case diagnosed as dermatofibrosarcoma protuberans was presented to illustrate the approach. The patient's tumor resection and the size of multiple defects were measured and simulated via the virtual surgery system. A three-island perforator flap from the descending branch of the lateral femoral circumflex artery was designed accurately. Two weeks postoperatively, the flap was healed as anticipated and the patient was satisfied with the profile. Conclusion: The combination of the 3dMD and CBCT technologies improves the accuracy and fitness of extra- and intra-oral soft tissue reconstruction.

4.
J Biomater Appl ; : 8853282241268683, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056481

ABSTRACT

The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.

5.
Sci Rep ; 14(1): 15600, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971916

ABSTRACT

Binding of Staphylococcus aureus protein A (SPA) to osteoblasts induces apoptosis and inhibits bone formation. Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into bone, fat and cartilage. Therefore, it was important to analyze the molecular mechanism of SPA on osteogenic differentiation. We introduced transcript sequence data to screen out differentially expressed genes (DEGs) related to SPA-interfered BMSC. Protein-protein interaction (PPI) network of DEGs was established to screen biomarkers associated with SPA-interfered BMSC. Receiver operating characteristic (ROC) curve was plotted to evaluate the ability of biomarkers to discriminate between two groups of samples. Finally, we performed GSEA and regulatory analysis based on biomarkers. We identified 321 DEGs. Subsequently, 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap and Kif14) were identified by hubba algorithm in PPI. ROC analysis showed that six biomarkers could clearly discriminate between normal differentiated and SPA-interfered BMSC. Moreover, we found that these biomarkers were mainly enriched in the pyrimidine metabolism pathway. We also constructed '71 circRNAs-14 miRNAs-5 mRNAs' and '10 lncRNAs-5 miRNAs-2 mRNAs' networks. Kntc1 and Asf1b genes were associated with rno-miR-3571. Nek2 and Asf1b genes were associated with rno-miR-497-5p. Finally, we found significantly lower expression of six biomarkers in the SPA-interfered group compared to the normal group by RT-qPCR. Overall, we obtained 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap, and Kif14) related to SPA-interfered BMSC, which provided a theoretical basis to explore the key factors of SPA affecting osteogenic differentiation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Cell Differentiation/genetics , Humans , Biomarkers/metabolism , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Protein Interaction Maps/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Gene Expression Profiling , Gene Regulatory Networks
6.
Biomolecules ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39062594

ABSTRACT

BACKGROUND: Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS: Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS: We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION: The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.


Subject(s)
Autoantibodies , Dysbiosis , Feces , Gastrointestinal Microbiome , Pemphigus , Humans , Pemphigus/immunology , Pemphigus/microbiology , Gastrointestinal Microbiome/immunology , Autoantibodies/immunology , Male , Female , Dysbiosis/immunology , Dysbiosis/microbiology , Middle Aged , Adult , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Aged , Case-Control Studies , Bacteria/immunology , Bacteria/classification
7.
J Pharm Biomed Anal ; 248: 116288, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38981330

ABSTRACT

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Sesquiterpenes, Germacrane , Animals , Sesquiterpenes, Germacrane/metabolism , Rats , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/administration & dosage , Male , Chromatography, High Pressure Liquid/methods , Tissue Distribution , Administration, Oral , Feces/chemistry
8.
BMC Psychiatry ; 24(1): 504, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014405

ABSTRACT

BACKGROUND: Declining physical activity and increasing screen time (ST) among Chinese adolescents have become major concerns shared by scholars, while mental health issues are also on the rise. Previous studies have confirmed the association between physical activity and screen time and psychological symptoms, but it is unclear how their psychological symptoms, especially for Chinese university students who have a high proportion of psychological symptoms, and no research evidence has been found. METHODS: This study investigated physical activity, screen time, and psychological symptoms in 11,173 university students aged 19-22 years in six regions of China. A binary logistic regression analysis was used to analyze the association between moderate-to-vigorous physical activity (MVPA) and screen time and psychological symptoms. And the generalize linear model (GLM) analysis was used to further analyze the association between MVPA and screen time and psychological symptoms. RESULTS: The detection rate of psychological symptoms among Chinese university students was 16.3%, with a higher percentage of female students (17.5%) than male students (14.7%). The proportion of male students (8.2%) with MVPA > 60 min/d was higher than that of female students (2.3%), and the proportion of male students (33.8%) and female students (34.5%) with screen time > 2 h/d was basically the same. The generalize linear model (GLM) analysis showed that university students with MVPA < 30 min/d and screen time > 2 h/d (OR = 1.59, 95% CI: 1.10-2.31) had the highest risk of psychological symptoms (OR = 1.59, 95% CI: 1.10-2.31) compared to university students with MVPA > 60 min/d and screen time < 1 h/d as the reference group. The risk of psychological symptoms was the highest among those with MVPA < 30 min/d and screen time > 2 h/d (OR = 1.59,95% CI: 1.10-2.31). In addition, university students with MVPA > 60 min/d and a screen time of 1-2 h/d (OR = 0.09, 95% CI: 0.03-0.25) had the lowest risk of psychological symptoms (P < 0.001). The same trend was observed for both male and female students. CONCLUSION: Chinese university students have a certain proportion of psychological symptom problems, and there is a significant between MVPA and screen time and psychological symptoms, and the same trend exists for both male and female students. Chinese university students should perform MVPA for not less than 60 min a day, and at the same time control the duration of screen time, and screen time should be controlled between 1 and 2 h a day, which has a better promotion effect on psychological health.


Subject(s)
Exercise , Screen Time , Students , Humans , Female , Male , Students/psychology , Students/statistics & numerical data , China/epidemiology , Young Adult , Universities , Cross-Sectional Studies , Exercise/psychology , Adult
9.
Nano Lett ; 24(29): 8979-8987, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38994924

ABSTRACT

With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.

10.
Article in English | MEDLINE | ID: mdl-38984607

ABSTRACT

Liver ischemia-reperfusion (I/R) injury is a common cause of organ failure, developed by a sudden block in the blood and oxygen supply and subsequent restoration. I/R damage is responsible for acute and chronic rejection after organ transplantation, accounting for 10% of early graft failure. The study investigated the therapeutic properties of fangchinoline in liver injury-induced rats. The rats were divided into three groups: Sham, I/R without pretreatment, and I/R + 10 mg/kg fangchinoline pretreatment. Blood and liver samples were collected for assays, and an in silico docking analysis was conducted to determine fangchinoline's inhibitory effect. The pretreatment with 10 mg/kg of fangchinoline effectively reduced hepatic marker enzymes such as AST, LDH, and ALT in the serum of rats with liver I/R damage. Fangchinoline treatment significantly reduced interleukin-8 (IL-8), IL-6, and tumor necrosis factor-α (TNF-α) in I/R-induced rats, boosting antioxidants and decreasing MDA. Histopathological studies showed liver injury protection, and fangchinoline inhibited TNF-α and IL-6 with improved binding affinity. Fangchinoline has hepatoprotective properties by reducing inflammation in rats with liver I/R damage, as demonstrated in the current study. Hence, it can be an effective salutary agent in preventing liver damage caused by I/R.

11.
Int J Biol Macromol ; 275(Pt 2): 133743, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986975

ABSTRACT

Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-ß-D-Manp-(1→ and →2)-ß-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-ß-D-Galp-(1→ and minor →2)-ß-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-ß-D-Galp-(1→ and O-4 position of (1→2)-ß-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.


Subject(s)
Anticoagulants , Caulerpa , Mannans , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/isolation & purification , Caulerpa/chemistry , Mannans/chemistry , Mannans/pharmacology , Mannans/isolation & purification , Molecular Weight , Sulfates/chemistry , Humans
12.
Sci Total Environ ; 947: 174478, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38964381

ABSTRACT

Perfluorooctane sulfonate (PFOS), a class of synthetic chemicals detected in various environmental compartments, has been associated with dysfunctions of the human central nervous system (CNS). However, the underlying neurotoxicology of PFOS exposure is largely understudied due to the lack of relevant human models. Here, we report bioengineered human midbrain organoid microphysiological systems (hMO-MPSs) to recapitulate the response of a fetal human brain to multiple concurrent PFOS exposure conditions. Each hMO-MPS consists of an hMO on a fully 3D printed holder device with a perfusable organoid adhesion layer for enhancing air-liquid interface culturing. Leveraging the unique, simply-fabricated holder devices, hMO-MPSs are scalable, easy to use, and compatible with conventional well-plates, and allow easy transfer onto a multiple-electrode array (MEA) system for plug-and-play measurement of neural activity. Interestingly, the neural activity of hMO-MPSs initially increased and subsequently decreased by exposure to a concentration range of 0, 30, 100, to 300 µM of PFOS. Furthermore, PFOS exposure impaired neural development and promoted neuroinflammation in the engineered hMO-MPSs. Along with PFOS, our platform is broadly applicable for studies toxicology of various other environmental pollutants.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Mesencephalon , Organoids , Fluorocarbons/toxicity , Humans , Alkanesulfonic Acids/toxicity , Organoids/drug effects , Mesencephalon/drug effects , Environmental Pollutants/toxicity , Pregnancy , Female , Microphysiological Systems
13.
World J Gastrointest Surg ; 16(6): 1601-1608, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983328

ABSTRACT

BACKGROUND: This study was designed to investigate the clinical efficacy and safety of Gamma Knife® combined with transarterial chemoembolization (TACE) and immunotherapy in the treatment of primary liver cancer. AIM: To investigate the clinical efficacy and safety of Gamma Knife® combined with TACE and immune-targeted therapy in the treatment of primary liver cancer. METHODS: Clinical data from 51 patients with primary liver cancer admitted to our hospital between May 2018 and October 2022 were retrospectively collected. All patients underwent Gamma Knife® treatment combined with TACE and immunotherapy. The clinical efficacy, changes in liver function, overall survival (OS), and progression-free survival (PFS) of patients with different treatment responses were evaluated, and adverse reactions were recorded. RESULTS: The last follow-up for this study was conducted on October 31, 2023. Clinical evaluation of the 51 patients with primary liver cancer revealed a partial response (PR) in 27 patients, accounting for 52.94% (27/51); stable disease (SD) in 16 patients, accounting for 31.37% (16/51); and progressive disease (PD) in 8 patients, accounting for 15.69% (8/51). The objective response rate was 52.94%, and the disease control rate was 84.31%. Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alpha-fetoprotein isoform levels decreased after treatment compared with pretreatment (all P = 0.000). The median OS was 26 months [95% confidence interval (95%CI): 19.946-32.054] in the PR group and 19 months (95%CI: 14.156-23.125) in the SD + PD group, with a statistically significant difference (P = 0.015). The median PFS was 20 months (95%CI: 18.441-34.559) in the PR group and 12 months (95%CI: 8.745-13.425) in the SD + PD group, with a statistically significant difference (P = 0.002). Common adverse reactions during treatment included nausea and vomiting (39.22%), thrombocytopenia (27.45%), and leukopenia (25.49%), with no treatment-related deaths reported. CONCLUSION: Gamma Knife® combined with TACE and immune-targeted therapy is safe and effective in the treatment of primary liver cancer and has a good effect on improving the clinical benefit rate and liver function of patients.

14.
Cancer Res ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861362

ABSTRACT

The efficacy of immunotherapy in prostate cancer patients is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer.

15.
New Phytol ; 243(4): 1329-1346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38898642

ABSTRACT

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.


Subject(s)
Cycadopsida , Droughts , Plant Leaves , Water , Xylem , Xylem/physiology , Xylem/anatomy & histology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Cycadopsida/physiology , Cycadopsida/anatomy & histology , Species Specificity
16.
Sci Total Environ ; 946: 174233, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936726

ABSTRACT

Treatment of swine manure by hydrothermal carbonization (HTC) with the aid of different surfactants was first explored in this study. PEG 400 (polyethylene glycol 400) and Tween 80 facilitated the formation of bio-oil. SLS (sodium lignosulfonate) and SDS (sodium dodecyl sulfate) promoted the formation of water-soluble matters/gases. Span 80 enhanced the formation of hydrochar, which resulted in a 50.19 % mass yield, 92.39 % energy yield, and a caloric value of 28.68 MJ/kg. The hydrochar obtained with Span 80 presented a similar combustion performance to raw swine manure and the best pyrolysis performance. The use of Span 80 promoted the transfer of degradation products to hydrochar, especially hydrophobic ester and ketone compounds. Notedly, Span 80 suppressed the synthesis of PAHs during the HTC process, which was reduced to 0.92 mg/kg. Furthermore, the hydrochar produced with Span 80 contained lower contents of heavy metals. On the whole, Span 80 has shown great potential in enhancing the HTC of swine manure. The acting mechanisms of surfactants in the HTC of swine manure included adsorption, dispersion, and electrostatics repulsion.


Subject(s)
Manure , Surface-Active Agents , Manure/analysis , Surface-Active Agents/chemistry , Animals , Swine
17.
Environ Sci Technol ; 58(26): 11695-11706, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38877970

ABSTRACT

Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.


Subject(s)
Sulfonamides , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Sulfonamides/analysis , Acetylation , Anti-Bacterial Agents , Waste Disposal, Fluid , China , Sulfones , Environmental Monitoring
18.
Polymers (Basel) ; 16(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38932065

ABSTRACT

Carbon fiber-reinforced plastic (CFRP) is frequently utilized as a bolted joint material in aircraft applications because of its high specific strength and specific modulus. Therefore, the performance of CFRP under -50° is significant. Here, we discuss the specimens of two bolted connections (single-nailed and double-nailed) used for static load tensile and tensile fatigue tests. We obtained the failure curves and fatigue life relationships of the specimens with two different connection methods at different tightening torques (2 N/m, 4 N/m, and 6 N/m) and low room temperatures. Our analysis reveals the effect of the bolt tightening torque and temperature on the structural mechanical properties of a CFRP bolted joint. It provides a data reference for researchers to design a composite bolted joint structure in an airplane flight environment.

19.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893842

ABSTRACT

An intelligent optimization technology was proposed to mitigate prevalent multi-defects, particularly failure, wrinkling, and springback in sheet metal forming. This method combined deep neural networks (DNNs), genetic algorithms (GAs), and Monte Carlo simulation (MCS), collectively as DNN-GA-MCS. Our primary aim was to determine intricate process parameters while elucidating the intricate relationship between processing methodologies and material properties. To achieve this goal, variable blank holder force (VBHF) trajectories were implemented into five sub-stroke steps, facilitating adjustments to the blank holder force via numerical simulations with an oil pan model. The Forming Limit Diagram (FLD) predicted by machine learning algorithms based on the Generalized Incremental Stress State Dependent Damage (GISSMO) model provided a robust framework for evaluating sheet failure dynamics during the stamping process. Numerical results confirmed significant improvements in formed quality: compared with the average value of training sets, the improvements of 18.89%, 13.59%, and 14.26% are achieved in failure, wrinkling, and springback; in the purposed two-segmented mode VBHF case application, the average value of three defects is improved by 12.62%, and the total summation of VBHF is reduced by 14.07%. Statistical methodologies grounded in material flow analysis were applied, accompanied by the proposal of distinctive optimization strategies for the die structure aimed at enhancing material flow efficiency. In conclusion, our advanced methodology exhibits considerable potential to improve sheet metal forming processes, highlighting its significant effect on defect reduction.

20.
Sci Rep ; 14(1): 13457, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38862656

ABSTRACT

Acute pancreatitis (AP) is currently among the most prevalent digestive diseases. The pathogenesis of AP remains elusive, and there is no specific treatment. Therefore, identifying novel therapeutic targets is imperative for effective management and prevention of AP. In this study, we conducted a comprehensive transcriptomic analysis of peripheral blood from patients with AP and the pancreatic tissue from a mouse model of AP. Our analyses revealed that mouse model of AP exhibited a higher enrichment of mitogen-activated protein kinase signaling, endocytosis, apoptosis and tight junction pathways than the control. Subsequent weighted gene co-expression network analysis identified 15 gene modules, containing between 50 and 1000 genes each, which demonstrated significant correlations within samples from patients with AP. Further screening identified four genes (ACSL4, GALNT3, WSB1, and IL1R1) that were significantly upregulated in severe acute pancreatitis (SAP) in both human and mouse samples. In mouse models of SAP, ACSL4 was significantly upregulated in the pancreas, whereas GALNT3, WSB1, and IL1R1 were not. Lastly, we found that a commercially available ACSL4 inhibitor, PRGL493, markedly reduced IL-6 and TNFα expression, alleviated pancreatic edema and necrosis, and diminished the infiltration of inflammatory cells. In conclusion, this study comprehensively depicts the key genes and signaling pathways implicated in AP and suggests the potential of ACSL4 as a novel therapeutic target for SAP. These findings provide valuable insights for further exploration of therapeutic strategies for SAP.


Subject(s)
Disease Models, Animal , Pancreatitis , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreatitis/genetics , Humans , Mice , Male , Pancreas/metabolism , Pancreas/pathology , Pancreas/drug effects , Gene Expression Profiling , Signal Transduction , Acute Disease , Female
SELECTION OF CITATIONS
SEARCH DETAIL