Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cancers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34439123

ABSTRACT

The identification of miRNAs' targets and associated regulatory networks might allow the definition of new strategies using drugs whose association mimics a given miRNA's effects. Based on this assumption we devised a multi-omics approach to precisely characterize miRNAs' effects. We combined miR-491-5p target affinity purification, RNA microarray, and mass spectrometry to perform an integrated analysis in ovarian cancer cell lines. We thus constructed an interaction network that highlighted highly connected hubs being either direct or indirect targets of miR-491-5p effects: the already known EGFR and BCL2L1 but also EP300, CTNNB1 and several small-GTPases. By using different combinations of specific inhibitors of these hubs, we could greatly enhance their respective cytotoxicity and mimic the miR-491-5p-induced phenotype. Our methodology thus constitutes an interesting strategy to comprehensively study the effects of a given miRNA. Moreover, we identified targets for which pharmacological inhibitors are already available for a clinical use or in clinical trials. This study might thus enable innovative therapeutic options for ovarian cancer, which remains the leading cause of death from gynecological malignancies in developed countries.

3.
EMBO Mol Med ; 10(5)2018 05.
Article in English | MEDLINE | ID: mdl-29661911

ABSTRACT

The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA-binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2-/- animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.


Subject(s)
Codon, Nonsense , Exome Sequencing/methods , Gene Expression Profiling/methods , Infertility/genetics , Nuclear Proteins/physiology , Oocytes/metabolism , RNA-Binding Proteins/physiology , Adult , Animals , Cohort Studies , Female , Humans , Meiosis/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/genetics , Oocytes/cytology , RNA-Binding Proteins/genetics , Young Adult
4.
Trends Cancer ; 4(3): 222-238, 2018 03.
Article in English | MEDLINE | ID: mdl-29506672

ABSTRACT

MicroRNAs (miRNAs) are key regulatory elements encoded by the genome. A single miRNA can downregulate the expression of multiple genes involved in diverse functions. Because cancer is a disease with multiple gene aberrations, developing novel approaches to identify and modulate miRNA pathways may result in a breakthrough for cancer treatment. With a special focus on glioblastoma (GBM), this review provides an up-to-date summary of miRNA biogenesis, the role of miRNA in cancer resistance, and essential tools for modulating miRNA expression, as well as of clinically promising RNAi delivery systems and how they can be adapted for therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , MicroRNAs/therapeutic use , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Genetic Therapy/methods , Glioblastoma/genetics , Glioblastoma/metabolism , Humans
5.
Microrna ; 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27457069

ABSTRACT

OBJECTIVE: microRNA assessments in biological samples can be performed by different methods that mainly rely on hybridization process, qPCR or RNA sequencing. With the aim to detect and validate microRNA biomarkers in tumor samples, we challenged the consistency of the quantitative results obtained with the different methods. METHODS: We measured microRNA concentrations in several biological samples such as cultured tumor cells or tumor tissues (frozen tissues or FFPE samples) using different microRNA assay methods, in particular hybridization to AffymetrixTM arrays, qPCR and digital droplet qPCR (BioradTM) based on Taqman microRNA assays (Life TechnologiesTM). We also compared our results to other data that have been obtained with different technical approaches and available in the literature. RESULTS: We found poor consistency for the microRNA amounts measured in the samples assayed by the different methods. Both technical platforms and microRNA assays protocols may be responsible for the observed inconsistencies. CONCLUSION: When assaying microRNAs for clinical purpose or fundamental researches it seems necessary to keep in mind the specific pitfalls of all the microRNA detection methods such as those we disclose here. Obviously, valid inter sample comparisons and meaningful multicenter studies can only be obtained when microRNA assessments are strictly performed with identical technical approaches and reagents.

6.
Mol Oncol ; 10(7): 981-92, 2016 08.
Article in English | MEDLINE | ID: mdl-27083764

ABSTRACT

Circulating miRNAs are promising biomarkers in oncology but have not yet been implemented in the clinic given the lack of concordance across studies. In order to increase the cross-studies reliability, we attempted to reduce and to control the circulating miRNA expression variability between patients. First, to maximize profiling signals and to reduce miRNA expression variability, three isolation kits were compared and the NucleoSpin(®) kit provided higher miRNA concentrations than the other widely used kits. Second, to control inter-sample variability during the profiling step, the exogenous miRNAs normalization method commonly used for RT-qPCR validation step was adapted to microarray experiments. Importantly, exogenous miRNAs presented two-fold lower inter-sample variability than the widely used endogenous miR-16-5p reflecting that the latter is subject to both biological and technical variability. Although Caenorhabditis elegans miRNAs isolation yields were heterogeneous, they correlated to each other and to their geometrical mean across samples. The normalization based on the geometrical mean of three exogenous miRNAs increased the correlation up-to 0.97 between the microarrays and individual RT-qPCR steps of circulating miRNAs expression. Overall, this new strategy open new avenue to identify reliable circulating miRNA signatures for translation into clinical practice.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Profiling/standards , MicroRNAs/blood , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/blood , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Reference Standards
7.
Microrna ; 5(3): 201-210, 2016.
Article in English | MEDLINE | ID: mdl-28105905

ABSTRACT

OBJECTIVE: microRNA assessments in biological samples can be performed by different methods that mainly rely on hybridization process, qPCR or RNA sequencing. With the aim to detect and validate microRNA biomarkers in tumor samples, we challenged the consistency of the quantitative results obtained with the different methods. METHODS: We measured microRNA concentrations in several biological samples such as cultured tumor cells or tumor tissues (frozen tissues or FFPE samples) using different microRNA assay methods, in particular hybridization to AffymetrixTM arrays, qPCR and digital droplet qPCR (BioradTM) based on Taqman microRNA assays (Life TechnologiesTM). We also compared our results to other data that have been obtained with different technical approaches and available in the literature. RESULTS: We found poor consistency for the microRNA amounts measured in the samples assayed by the different methods. Both technical platforms and microRNA assays protocols may be responsible for the observed inconsistencies. CONCLUSION: When assaying microRNAs for clinical purpose or fundamental researches it seems necessary to keep in mind the specific pitfalls of all the microRNA detection methods such as those we disclose here. Obviously, valid inter sample comparisons and meaningful multicenter studies can only be obtained when microRNA assessments are strictly performed with identical technical approaches and reagents.


Subject(s)
Gene Expression Profiling/methods , Glioblastoma/genetics , MicroRNAs/analysis , Base Sequence , Cell Line, Tumor , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , Microarray Analysis/methods , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA/methods
8.
Microrna ; 4(2): 131-45, 2015.
Article in English | MEDLINE | ID: mdl-26456536

ABSTRACT

Brain glial tumors, and particularly glioblastomas, are tumors with a very poor prognosis. Currently, the parameters that control aggressiveness, migration, or chemoresistance are not well known. In this tumor context, microRNAs are thought to be essential actors of tumorigenesis as they are able to control the expression of numerous genes. microRNAs are not only active in controlling tumor cell pathways, they are also secreted by cells, inside microvesicles called exosomes, and may play specific roles outside the tumor cells in the tumor microenvironment. We analyzed the microRNA content of exosomes produced in vitro by normal glial cells (astrocytes) and tumor glial cells (U87 MG) using Affymetrix microarrays. It appears that the exosome microRNA profiles are qualitatively quite similar. Nevertheless, their quantitative profiles are different and may be potentially taken as an opportunity to carry out assays of diagnostic interest. We submitted the cultured cells to several stresses such as oxygen deprivation or treatments with chemical drugs (GW4869 or 5-Aza-2'- deoxycitidine) to assess the impact of the cellular microRNA profile modifications on the exosome microRNA profiles. We found that modifications of the cellular microRNA content are not strictly mirrored in exosomes. On the basis of these results, we propose that the way microRNAs are released in exosomes is probably the result of a combination of different excretion mechanisms or constraints that concur in a controlled regulation of the exosome microRNA secretion.


Subject(s)
Astrocytes/metabolism , Exosomes/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Aniline Compounds/pharmacology , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Benzylidene Compounds/pharmacology , Biological Transport , Cell Line, Tumor , Decitabine , Exosomes/drug effects , Gene Expression Profiling , Gene Expression Regulation , Humans , Hypoxia/genetics , Hypoxia/metabolism , Models, Biological , Phenotype
9.
J Alzheimers Dis ; 42(3): 789-99, 2014.
Article in English | MEDLINE | ID: mdl-24934545

ABSTRACT

Epidemiological and experimental studies suggest that 1,25-dihydroxyvitamin D3 (1,25D) plays a neuroprotective role in neurodegenerative diseases including Alzheimer's disease. Most of the experimental data regarding the genes regulated by this hormone in brain cells have been obtained with neuron and glial cells. Pericytes play a critical role in brain function that encompasses their classical function in blood-brain barrier control and maintenance. However, the gene response of brain pericyte to 1,25D remains to be investigated. Analyses of the transcriptomic response of human brain pericytes to 1,25D demonstrate that human brain pericytes in culture respond to 1,25D by regulating genes involved in the control of neuroinflammation. In addition, pericytes respond to the pro-inflammatory cytokines tumor necrosis factor-α and Interferon-γ by inducing the expression of the CYP27B1 gene which is involved in 1,25D synthesis. Taken together, these results suggest that neuroinflammation could trigger the synthesis of 1,25D by brain pericytes, which in turn respond to the hormone by a global anti-inflammatory response. These findings identify brain pericytes as a novel 1,25D-responsive cell type and provide additional evidence for the potential value of vitamin D in the prevention or therapy of Alzheimer's disease and other neurodegenerative/neuropsychiatric diseases associated with an inflammatory component.


Subject(s)
Calcitriol/pharmacology , Gene Expression Regulation/drug effects , Pericytes/drug effects , Receptors, Calcitriol/metabolism , Vitamin D3 24-Hydroxylase/metabolism , Vitamins/pharmacology , Brain/cytology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Humans , Interferon-alpha/pharmacology , RNA, Messenger/metabolism , Receptors, Calcitriol/genetics , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation/drug effects , Vitamin D3 24-Hydroxylase/genetics
10.
World J Stem Cells ; 6(2): 134-43, 2014 Apr 26.
Article in English | MEDLINE | ID: mdl-24772240

ABSTRACT

Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

11.
Future Oncol ; 9(6): 817-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718302

ABSTRACT

Viewing tumors as ecosystems offers the opportunity to consider how ecological concepts can be translated to novel therapeutic perspectives. The ecological trap concept emerged approximately half a century ago when it was observed that animals can prefer an environment of low quality for survival over other available environments of higher quality. The presence of such a trap can drive a local population to extinction. The cancer cell trap concept is the translation of the ecological trap into glioma therapy. It exploits and diverts the invasive potential of glioma cells by guiding their migration towards specific locations where a local therapy can be delivered efficiently. This illustrates how an ecological concept can change therapeutic obstacles into therapeutic tools.


Subject(s)
Glioma/pathology , Glioma/therapy , Tumor Microenvironment , Animals , Glioma/metabolism , Glioma/physiopathology , Humans , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy
12.
J Neurooncol ; 113(2): 239-49, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23543272

ABSTRACT

Most of our knowledge regarding glioma cell biology comes from cell culture experiments. For many years the standards for glioma cell culture were the use of cell lines cultured in the presence of serum and 20 % O2. However, in vivo, normoxia in many brain areas is in close to 3 % O2. Hence, in cell culture, the experimental value referred as the norm is hyperoxic compared to any brain physiological value. Likewise, cells in vivo are not usually exposed to serum, and low-passaged glioma neurosphere cultures maintained in serum-free medium is emerging as a new standard. A consequence of changing the experimental normoxic standard from 20 % O2 to the more brain physiological value of 3 % O2, is that a 3 % O2 normoxic reference point enabled a more rigorous characterization of the level of regulation of genes by hypoxia. Among the glioma hypoxia-regulated genes characterized using this approach we found VE-cadherin that is required for blood vessel formation, and filamin B a gene involved in endothelial cell motility. Both VE-cadherin and filamin B were found expressed in pseudopalisades, a glioblastoma pathognomonic structure made of hypoxic migrating cancer cells. These results provide additional clues on the role played by hypoxia in the acquisition of endothelial traits by glioma cells and on the functional links existing between pseudopalisades, hypoxia, and tumor progression.


Subject(s)
Antigens, CD/metabolism , Brain Neoplasms/pathology , Cadherins/metabolism , Endothelium, Vascular/pathology , Filamins/metabolism , Glioma/pathology , Hypoxia/pathology , Antigens, CD/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Brain Neoplasms/etiology , Brain Neoplasms/metabolism , Cadherins/genetics , Cell Movement , Cell Proliferation , Endothelium, Vascular/metabolism , Filamins/genetics , Gene Expression Profiling , Glioma/etiology , Glioma/metabolism , Humans , Hypoxia/complications , Immunoenzyme Techniques , Necrosis , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
13.
J Alzheimers Dis ; 35(3): 553-64, 2013.
Article in English | MEDLINE | ID: mdl-23455988

ABSTRACT

Seasonal or chronic vitamin D deficiency and/or insufficiency is highly prevalent in the human population. Receptors for 1,25-dihydroxyvitamin D3, the hormonal metabolite of vitamin D, are found throughout the brain. To provide further information on the role of this hormone on brain function, we analyzed the transcriptomic profiles of mixed neuron-glial cell cultures in response to 1,25-dihydroxyvitamin D3. 1,25-dihydroxyvitamin D3 treatment increases the mRNA levels of 27 genes by at least 1.9 fold. Among them, 17 genes were related to neurodegenerative and psychiatric diseases, or brain morphogenesis. Notably, 10 of these genes encode proteins potentially limiting the progression of Alzheimer's disease. These data provide support for a role of 1,25-dihydroxyvitamin D3 in brain disease prevention. The possible consequences of circannual or chronic vitamin D insufficiencies on a tissue with a low regenerative potential such as the brain should be considered.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Calcitriol/pharmacology , Gene Expression Regulation/drug effects , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Neuroglia/drug effects , Neuroglia/physiology , RNA, Messenger/genetics , Transcriptome/drug effects , Animals , Brain/drug effects , Brain/physiopathology , Cell Line , Disease Progression , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Gene Expression Regulation/genetics , Humans , Mental Disorders/genetics , Mental Disorders/physiopathology , Mice , Neurons/drug effects , Neurons/physiology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Receptors, Calcitriol/drug effects , Receptors, Calcitriol/genetics , Vitamin D Response Element/drug effects , Vitamin D Response Element/genetics
14.
Basic Clin Androl ; 23: 7, 2013.
Article in English | MEDLINE | ID: mdl-25780569

ABSTRACT

BACKGROUND: Globozoospermia is a male infertility phenotype characterized by the presence in the ejaculate of near 100% acrosomeless round-headed spermatozoa with normal chromosomal content. Following intracytoplasmic sperm injection (ICSI) these spermatozoa give a poor fertilization rate and embryonic development. We showed previously that most patients have a 200 kb homozygous deletion, which includes DPY19L2 whole coding sequence. Furthermore we showed that the DPY19L2 protein is located in the inner nuclear membrane of spermatids during spermiogenesis and that it is necessary to anchor the acrosome to the nucleus thus performing a function similar to that realized by Sun proteins within the LINC-complex (Linker of Nucleoskeleton and Cytoskeleton). SUN1 was described to be necessary for gametogenesis and was shown to interact with the telomeres. It is therefore possible that Dpy19l2 could also interact, directly or indirectly, with the DNA and modulate gene expression during spermatogenesis. In this study, we compared the transcriptome of testes from Dpy19l2 knock out and wild type mice in order to identify a potential deregulation of transcripts that could explain the poor fertilization potential of Dpy19l2 mutated spermatozoa. METHODS: RNA was extracted from testes from DPY19L2 knock out and wild type mice. The transcriptome was carried out using GeneChip® Mouse Exon 1.0 ST Arrays. The biological processes and molecular functions of the differentially regulated genes were analyzed with the PANTHER software. RESULTS: A total of 76 genes were deregulated, 70 were up-regulated and 6 (including Dpy19l2) were down-regulated. These genes were found to be involved in DNA/RNA binding, structural organization, transport and catalytic activity. CONCLUSIONS: We describe that an important number of genes are differentially expressed in Dpy19l2 mice. This work could help improving our understanding of Dpy19l2 functions and lead to a better comprehension of the molecular mechanism involved in spermatogenesis.


CONTEXTE: La globozoospermie est caractérisée par la présence dans l'éjaculat de près de 100% de spermatozoïdes ronds et dépourvus d'acrosome qui présentent un contenu chromosomique normal. L'injection intracytoplasmique (ICSI) de ces spermatozoïdes donne cependant un taux de fécondation et de développement embryonnaire particulièrement bas. Nous avons montré précédemment que la plupart des patients globozoospermes présentent une délétion homozygote de 200 Kb qui inclue la totalité de la séquence codante du gène DPY19L2. De plus nous avons montré que la protéine DPY19L2 était localisée dans la membrane interne des noyaux des spermatides pendant la spermatogénèse et qu'elle est nécessaire pour fixer l'acrosome au noyau, réalisant ainsi une fonction similaire à celle des protéines Sun au sein du complexe LINC (Linker of Nucleoskeleton and Cytoskeleton). Il a par ailleurs été montré que SUN1 était nécessaire à la spermatogénèse et que cette protéine interagit avec les télomères chromosomiques. Il est donc possible que Dpy19l2 interagisse également, directement ou indirectement avec l'ADN et module l'expression génique lors de la spermatogénèse. Dans cette étude nous avons donc comparé le transcriptome de testicules de souris invalidées (KO) pour le gène Dpy19l2 à celui de souris sauvage afin d'identifier une éventuelle dérégulation génique qui pourrait expliquer le faible potentiel reproductif des spermatozoïdes globozoocéphales. MÉTHODE: L'ARN a été extrait de testicules de souris KO pour Dpy19l2 et de souris sauvages. Le transcriptome a été réalisé en utilisant des puces d'expression ® Mouse Exon 1.0 ST Arrays. Les processus biologiques et les fonctions des gènes dérégulés ont été analysés en utilisant le logiciel PANTHER. RÉSULTATS: Un total de 76 gènes a été identifié comme étant dérégulés, 70 gènes étaient surexprimés et 6 (incluant Dpy19l2) étaient sous-exprimés. Il s'agit de gènes principalement impliqués dans des interactions avec des acides nucléiques (ADN/ARN), ou ayant un rôle structural, dans le transport, ou présentant une activité catalytique. CONCLUSIONS: Cette étude nous a permis d'identifier et de décrire un nombre important de gènes exprimés de manière différentielle chez les souris KO pour Dpy19l2. Ce travail peut permettre d'améliorer notre compréhension des fonctions de Dpy19l2 et peut contribuer à obtenir une meilleure compréhension des mécanismes moléculaires nécessaire à la spermatogénèse.

15.
BMC Genomics ; 13: 482, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22978616

ABSTRACT

BACKGROUND: The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. RESULTS: From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. CONCLUSIONS: Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 3/genetics , Gene Expression Regulation/genetics , Mitochondrial ADP, ATP Translocases/genetics , Transcription, Genetic/genetics , Computational Biology , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics
16.
Front Biosci (Landmark Ed) ; 17(7): 2508-40, 2012 06 01.
Article in English | MEDLINE | ID: mdl-22652795

ABSTRACT

microRNAs (miRNAs) are small noncoding endogenously produced RNAs that play key roles in controlling the expression of many cellular proteins. Once they are recruited and incorporated into a ribonucleoprotein complex miRISC, they can target specific mRNAs in a miRNA sequence-dependent process and interfere in the translation into proteins of the targeted mRNAs via several mechanisms. Consequently, miRNAs can regulate many cellular pathways and processes. Dysregulation of their physiological roles may largely contribute to disease. In particular, in cancer, miRNAs can be involved in the deregulation of the expression of important genes that play key roles in tumorigenesis, tumor development, and angiogenesis and have oncogenic or tumor suppressor roles. This review focuses on the biogenesis and maturation of miRNAs, their mechanisms of gene regulation, and the way their expression is deregulated in cancer. The involvement of miRNAs in several oncogenic pathways such as angiogenesis and apoptosis, and in the inter-cellular dialog mediated by miRNA-loaded exosomes as well as the development of new therapeutical strategies based on miRNAs will be discussed.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/etiology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Gene Expression Regulation , Gene Rearrangement , Humans , MicroRNAs/therapeutic use , Models, Biological , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism
17.
BMC Microbiol ; 11: 172, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21798007

ABSTRACT

BACKGROUND: Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. RESULTS: The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37 °C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. CONCLUSIONS: SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis.


Subject(s)
Aspergillus/chemistry , Aspergillus/classification , Bacterial Proteins/analysis , Mycology/methods , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aspergillus/growth & development , Cluster Analysis , Culture Media/chemistry , Oxygen/metabolism , Temperature
18.
PLoS One ; 6(5): e20600, 2011.
Article in English | MEDLINE | ID: mdl-21655185

ABSTRACT

Gliomas such as oligodendrogliomas (ODG) and glioblastomas (GBM) are brain tumours with different clinical outcomes. Histology-based classification of these tumour types is often difficult. Therefore the first aim of this study was to gain microRNA data that can be used as reliable signatures of oligodendrogliomas and glioblastomas. We investigated the levels of 282 microRNAs using membrane-array hybridisation and real-time PCR in ODG, GBM and control brain tissues. In comparison to these control tissues, 26 deregulated microRNAs were identified in tumours and the tissue levels of seven microRNAs (miR-21, miR-128, miR-132, miR-134, miR-155, miR-210 and miR-409-5p) appropriately discriminated oligodendrogliomas from glioblastomas. Genomic, epigenomic and host gene expression studies were conducted to investigate the mechanisms involved in these deregulations. Another aim of this study was to better understand glioma physiopathology looking for targets of deregulated microRNAs. We discovered that some targets of these microRNAs such as STAT3, PTBP1 or SIRT1 are differentially expressed in gliomas consistent with deregulation of microRNA expression. Moreover, MDH1, the target of several deregulated microRNAs, is repressed in glioblastomas, making an intramitochondrial-NAD reduction mediated by the mitochondrial aspartate-malate shuttle unlikely. Understanding the connections between microRNAs and bioenergetic pathways in gliomas may lead to identification of novel therapeutic targets.


Subject(s)
Glioma/genetics , Glioma/metabolism , MicroRNAs/genetics , Blotting, Western , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , In Vitro Techniques , Polymerase Chain Reaction , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
19.
Int J Oncol ; 38(5): 1287-97, 2011 May.
Article in English | MEDLINE | ID: mdl-21318223

ABSTRACT

Tumor invasion or infiltration of adjacent tissues is the source of clinical challenges in diagnosis as well as prevention and treatment. Among brain tumors, infiltration of the adjacent tissues with diverse pleiotropic mechanisms is frequently encountered in benign meningiomas. We assessed whether a multiparametric analysis of meningiomas based on data from both clinical observations and molecular analyses could provide a consistent and accurate appraisal of invasive and infiltrative phenotypes and help determine the diagnosis of these tumors. Tissue analyses of 37 meningiomas combined enzyme-linked immunosorbent assay (ELISA) and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) assays of two different protein biomarkers (thrombospondin 1 and a phosphorylated form of vimentin) as well as gene expression analyses with oligonucleotide micro-arrays. Up to four different clinical and molecular parameters were then examined for tumor classification. From this study, we were able to cluster 36 out of the 37 tumors into two different subsets corresponding to infiltrative/invasive and non-infiltrative tumors. In addition, meningiomas that invade brain and those that infiltrate the neighboring skull bone exhibited no distinguishable molecular features. Our multi-parameter analysis that combines clinical data, transcriptomic and molecular assays clearly reveals the heterogeneity of meningiomas and distinguishes the intrinsically infiltrative/invasive tumors from the non-infiltrative meningiomas.


Subject(s)
Meningeal Neoplasms/pathology , Meningioma/pathology , Adult , Aged , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Meningeal Neoplasms/chemistry , Meningeal Neoplasms/metabolism , Meningioma/chemistry , Meningioma/metabolism , Middle Aged , Phenotype , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thrombospondin 1/analysis
20.
Cancer Genomics Proteomics ; 7(2): 87-92, 2010.
Article in English | MEDLINE | ID: mdl-20335523

ABSTRACT

BACKGROUND: In a previous investigation, we showed that the janus kinase (JNK) inhibitor SP600125 induced several phenotypic and genomic changes in leukemia cells. However, the molecular mechanisms that sustain these changes remain unknown. The purpose of the present study was to examine gene expression changes in THP-1 leukemia cells treated with SP600125. MATERIALS AND METHODS: Gene expression levels were investigated using Affymetrix hybridization technology and quantitative reverse transcriptase polymerase chain reaction. RESULTS: Affymetrix technology showed that the expression of 1,038 genes with a biological process description well known in gene ontology was modulated. Fifteen genes were related to kinases or phosphatases, 20 genes were involved in the cell cycle regulation, and 23 genes were involved in apoptosis. A network of 15 correlated genes was obtained showing a primordial role for the myelocytomatosis viral oncogene homolog (MYC). CONCLUSION: These findings show that SP600125 exhibits cytostatic and cytolytic activities through MYC gene modulation.


Subject(s)
Anthracenes/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Oligonucleotide Array Sequence Analysis/methods , Cell Line, Tumor , Cluster Analysis , Down-Regulation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genes, Neoplasm/genetics , Humans , Reproducibility of Results , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...