Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998987

ABSTRACT

The inhibition of soluble epoxide hydrolase (sEH) can reduce the level of dihydroxyeicosatrienoic acids (DHETs) effectively maintaining endogenous epoxyeicosatrienoic acids (EETs) levels, resulting in the amelioration of inflammation and pain. Consequently, the development of sEH inhibitors has been a prominent research area for over two decades. In the present study, we synthesized and evaluated sulfonyl urea derivatives for their potential to inhibit sEH. These compounds underwent extensive in vitro investigation, revealing their potency against human and mouse sEH, with 4f showing the most promising sEH inhibitory potential. When subjected to lipopolysaccharide (LPS)-induced acute lung injury (ALI) in studies in mice, compound 4f manifested promising anti-inflammatory efficacy. We investigated the analgesic efficacy of sEH inhibitor 4f in a murine pain model of tail-flick reflex. These results validate the role of sEH inhibition in inflammatory diseases and pave the way for the rational design and optimization of sEH inhibitors based on a sulfonyl urea template.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Urea , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Humans , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides , Structure-Activity Relationship , Solubility , Disease Models, Animal , Pain/drug therapy
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732230

ABSTRACT

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Subject(s)
Endocannabinoids , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , HEK293 Cells , Ligands , Glycerides/pharmacology , Biosensing Techniques/methods , Cannabinoid Receptor Modulators/pharmacology , Animals , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism
3.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798603

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.

4.
Expert Opin Ther Pat ; 33(10): 651-668, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38037334

ABSTRACT

INTRODUCTION: Physiological and pathophysiological effects arising from detoxification of aldehydes in humans implicate the enzyme aldehyde dehydrogenase (ALDH) gene family comprising of 19 isoforms. The main function of this enzyme family is to metabolize reactive aldehydes to carboxylic acids. Dysregulation of ALDH activity has been associated with various diseases. Extensive research has since gone into studying ALHD isozymes, their structural biology and developing small-molecule inhibitors. Novel chemical strategies to enhance the selectivity of ALDH inhibitors have now appeared. AREAS COVERED: A comprehensive review of patent literature related to aldehyde dehydrogenase inhibitors in the last decade and half (2007-2022) is provided. EXPERT OPINION: Aldehyde dehydrogenase (ALDH) is an important enzyme that metabolizes reactive exogenous and endogenous aldehydes in the body through NAD(P)±dependent oxidation. Hence this family of enzymes possess important physiological as well as toxicological roles in human body. Significant efforts in the field have led to potent inhibitors with approved clinical agents for alcohol use disorder therapy. Further clinical translation of novel compounds targeting ALDH inhibition will validate the promised therapeutic potential in treating many human diseases.The scientific/patent literature has been searched on SciFinder-n, Reaxys, PubMed, Espacenet and Google Patents. The search terms used were 'ALDH inhibitors', 'Aldehyde Dehydrogenase Inhibitors'.


Subject(s)
Aldehyde Dehydrogenase , Patents as Topic , Humans , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehydes/pharmacology , Aldehydes/metabolism , Enzyme Inhibitors/pharmacology , Isoenzymes
5.
Biomed Pharmacother ; 168: 115178, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890204

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that affects lysosome-related organelles, often leading to fatal pulmonary fibrosis (PF). The search for a treatment for HPS pulmonary fibrosis (HPSPF) is ongoing. S-MRI-1867, a dual cannabinoid receptor 1 (CB1R)/inducible nitric oxide synthase (iNOS) inhibitor, has shown great promise for the treatment of several fibrotic diseases, including HPSPF. In this study, we investigated the in vitro ADME characteristics of S-MRI-1867, as well as its pharmacokinetic (PK) properties in mice, rats, dogs, and monkeys. S-MRI-1867 showed low aqueous solubility (< 1 µg/mL), high plasma protein binding (>99%), and moderate to high metabolic stability. In its preclinical PK studies, S-MRI-1867 exhibited moderate to low plasma clearance (CLp) and high steady-state volume of distribution (Vdss) across all species. Despite the low solubility and P-gp efflux, S-MRI-1867 showed great permeability and metabolic stability leading to a moderate bioavailability (21-60%) across mouse, rat, dog, and monkey. Since the R form of MRI-1867 is CB1R-inactive, we investigated the potential conversion of S-MRI-1867 to R-MRI-1867 in mice and found that the chiral conversion was negligible. Furthermore, we developed and validated a PBPK model that adequately fits the PK profiles of S-MRI-1867 in mice, rats, dogs, and monkeys using various dosing regimens. We employed this PBPK model to simulate the human PK profiles of S-MRI-1867, enabling us to inform human dose selection and support the advancement of this promising drug candidate in the treatment of HPSPF.


Subject(s)
Hermanski-Pudlak Syndrome , Pulmonary Fibrosis , Humans , Rats , Mice , Animals , Dogs , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/drug therapy , Hermanski-Pudlak Syndrome/drug therapy , Research Design
6.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37765043

ABSTRACT

The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies.

7.
ACS Omega ; 8(36): 32963-32976, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720784

ABSTRACT

Tremendous progress has been made in determining the structures of G-protein coupled receptors (GPCR) and their complexes in recent years. However, understanding activation and signaling in GPCRs is still challenging due to the role of protein dynamics in these processes. Here, we show how dynamic nuclear polarization (DNP)-enhanced magic angle spinning nuclear magnetic resonance in combination with a unique pair labeling approach can be used to study the conformational ensemble at specific sites of the cannabinoid receptor 2. To improve the signal-to-noise, we carefully optimized the DNP sample conditions and utilized the recently introduced AsymPol-POK as a polarizing agent. We could show qualitatively that the conformational space available to the protein backbone is different in different parts of the receptor and that a site in TM7 is sensitive to the nature of the ligand, whereas a site in ICL3 always showed large conformational freedom.

8.
J Med Chem ; 66(17): 11985-12004, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37611316

ABSTRACT

We have designed orally bioavailable, non-brain-penetrant antagonists of the cannabinoid-1 receptor (CB1R) with a built-in biguanide sensor to mimic 5'-adenosine monophosphate kinase (AMPK) activation for treating obesity-associated co-morbidities. A series of 3,4-diarylpyrazolines bearing rational pharmacophoric pendants designed to limit brain penetration were synthesized and evaluated in CB1R ligand binding assays and recombinant AMPK assays. The compounds displayed high CB1R binding affinity and potent CB1R antagonist activities and acted as AMPK activators. Select compounds showed good oral exposure, with compounds 36, 38-S, and 39-S showing <5% brain penetrance, attesting to peripheral restriction. In vivo studies of 38-S revealed decreased food intake and body weight reduction in diet-induced obese mice as well as oral in vivo efficacy of 38-S in ameliorating glucose tolerance and insulin resistance. The designed "cannabinoformin" four-arm CB1R antagonists could serve as potential leads for treatment of metabolic syndrome disorders with negligible neuropsychiatric side effects.


Subject(s)
Cannabinoids , Metabolic Diseases , Metabolic Syndrome , Animals , Mice , Metabolic Syndrome/drug therapy , AMP-Activated Protein Kinases , Biguanides/pharmacology , Biguanides/therapeutic use , Cannabinoid Receptor Antagonists , Mice, Obese
9.
Med Chem Res ; 32(6): 1063-1076, 2023.
Article in English | MEDLINE | ID: mdl-37305208

ABSTRACT

Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.

10.
Curr Top Med Chem ; 23(24): 2267-2276, 2023.
Article in English | MEDLINE | ID: mdl-37132313

ABSTRACT

Natural product substances have historically served as the most significant source of new leads for pharmaceutical development. Presently, drug discovery and development have adopted rational approaches to explore herbal resources for treating lifestyle-related diseases such as diabetes. For the treatment of diabetes, Curcumin longa has been extensively studied for evaluation of its antidiabetic potential using various in vivo and in vitro models. Literature resources such as PubMed and Google Scholar have been extensively searched to collect documented studies. Various parts of the plant and extracts have proven antidiabetic effects, namely, anti-hyperglycemic, antioxidant, and anti-inflammatory action, through different mechanisms. It is reported that the plant extract or its phytoconstituents regulate glucose and lipid metabolism. The reported study concluded the diversified antidiabetic role of C. longa and its phytoconstituents and, thus, its potential use as an antidiabetic agent.

11.
J Med Chem ; 65(24): 16062-16098, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36473091

ABSTRACT

Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.


Subject(s)
Acyl Coenzyme A , Sterol O-Acyltransferase , Humans , Cholesterol
12.
ACS Omega ; 7(35): 31612-31620, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092569

ABSTRACT

We report the development of a one-pot Bunte's reaction-enabled expeditious platform under aqueous conditions for the scalable conversion of sulfonylureas to synthetically versatile thio-sulfonylureas. The reaction was further propagated in the same pot to yield diverse chiral and achiral isothiosulfonyl analogs. The protocol enabled the synthesis of various drug-like molecules and was applied to an enantiomeric synthesis of a cannabinoid receptor antagonist SLV326.

13.
Expert Opin Ther Pat ; 32(6): 629-647, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35410559

ABSTRACT

INTRODUCTION: Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED: A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION: Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.


Subject(s)
Epoxide Hydrolases , Patents as Topic , Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fatty Acids , Humans
14.
J Med Chem ; 65(3): 2374-2387, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35084860

ABSTRACT

In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.


Subject(s)
Anti-Obesity Agents/therapeutic use , Cannabinoid Receptor Antagonists/therapeutic use , Obesity/drug therapy , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB1/metabolism , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/metabolism , Body Weight/drug effects , Brain/metabolism , Cannabinoid Receptor Antagonists/chemical synthesis , Cannabinoid Receptor Antagonists/metabolism , Diet, High-Fat , Drug Inverse Agonism , Hydrophobic and Hydrophilic Interactions , Male , Mice, Inbred C57BL , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Stereoisomerism , Structure-Activity Relationship
15.
Br J Pharmacol ; 179(10): 2121-2127, 2022 05.
Article in English | MEDLINE | ID: mdl-33769552

ABSTRACT

COVID-19 (SARS-CoV-2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID-19, there is growing concern about long-term effects of COVID-19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID-19 but also for preventing Long Covid are needed, and would mitigate against long-lasting health burden and economic costs, in addition to saving lives. COVID-19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID-19-related health complications. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/complications , Endocannabinoids , Humans , Lung , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
16.
Front Endocrinol (Lausanne) ; 12: 744857, 2021.
Article in English | MEDLINE | ID: mdl-34650521

ABSTRACT

Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.


Subject(s)
Antifibrotic Agents , Fibrosis , Nitric Oxide Synthase Type II , Receptor, Cannabinoid, CB1 , Skin Diseases , Animals , Humans , Male , Mice , Antibiotics, Antineoplastic , Antifibrotic Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters/metabolism , Bleomycin , Endocannabinoids/metabolism , Fibrosis/chemically induced , Fibrosis/drug therapy , Fibrosis/pathology , Hydroxyproline/metabolism , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/antagonists & inhibitors , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Skin/pathology , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/pathology
17.
Neuropharmacology ; 200: 108786, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34516984

ABSTRACT

Impulsive action can be defined as the inability to withhold a response and represents one of the dimensions of the broad construct impulsivity. Here, we characterized a modified differential reinforcement of low rates of responding (DRL) task developed in our laboratory, in which impulsive action is measured in ad libitum fed/watered subjects. Specifically, we first determined the effects of both sex and estrous cycle on impulsive action by systematically comparing male and estrous-synchronized female subjects. In addition, we evaluated the convergent validity of this modified DRL task by testing the effects of the D2R/5HT2AR antagonist, aripiprazole, and the noncompetitive NMDAR antagonist, MK-801. Finally, we tested the effects of the selective antagonist BD-1063 and agonist PRE-084 of Sigma-1 receptor (Sig-1R) on impulsive action using this modified DRL task. We found that female rats showed and increased inability to withhold a response when compared to males, and this effect was driven by the metestrus/diestrus phase of the estrous cycle. In addition, aripiprazole and MK-801 fully retained their capability to reduce and increase impulsive action, respectively. Finally, the selective Sig-1R antagonist, BD-1063 dose-dependently reduced the inability to withhold a response in both sexes, though more potently in female rats. In summary, we show that impulsive action, as measured in a modified DRL task which minimizes energy-homeostatic influences, is a function of both sex and estrous cycle. Furthermore, we validate the convergent validity of the task and provide evidence that Sig-1R antagonism may represent a novel pharmacological strategy to reduce impulsive action.


Subject(s)
Aripiprazole/pharmacology , Behavior, Animal/drug effects , Dizocilpine Maleate/pharmacology , Impulsive Behavior/drug effects , Piperazines/pharmacology , Receptors, sigma/drug effects , Animals , Choice Behavior/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Estrous Cycle/drug effects , Female , Male , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Serotonin 5-HT2 Receptor Agonists/pharmacology , Sigma-1 Receptor
18.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443679

ABSTRACT

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


Subject(s)
Alcohol Drinking/pathology , Cannabinoid Receptor Antagonists/pharmacology , Endotoxemia/pathology , Ethanol/adverse effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Alcohol Drinking/blood , Animals , Anxiety/blood , Anxiety/complications , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/complications , Cyclohexanols/administration & dosage , Elevated Plus Maze Test , Endotoxemia/blood , Endotoxemia/complications , Endotoxins/blood , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Hypothermia, Induced , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Pyrazoles/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Rimonabant/administration & dosage , Rimonabant/pharmacology , Stereoisomerism , Sulfonamides/administration & dosage
19.
Clin Transl Med ; 11(7): e471, 2021 07.
Article in English | MEDLINE | ID: mdl-34323400

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Subject(s)
Hermanski-Pudlak Syndrome/pathology , Nitric Oxide Synthase Type II/metabolism , Pulmonary Fibrosis/pathology , Receptor, Cannabinoid, CB1/metabolism , Adult , Animals , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Arachidonic Acids/metabolism , Bleomycin/adverse effects , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Endocannabinoids/metabolism , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hermanski-Pudlak Syndrome/complications , Hermanski-Pudlak Syndrome/metabolism , Humans , Interleukin-11/metabolism , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL , Middle Aged , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Polyunsaturated Alkamides/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Transforming Growth Factor beta1/metabolism
20.
ACS Pharmacol Transl Sci ; 4(3): 1175-1187, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34151207

ABSTRACT

Seven-transmembrane receptors signal via G-protein- and ß-arrestin-dependent pathways. We describe a peripheral CB1R antagonist (MRI-1891) highly biased toward inhibiting CB1R-induced ß-arrestin-2 (ßArr2) recruitment over G-protein activation. In obese wild-type and ßArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CB1R occupancy. By contrast, the unbiased global CB1R antagonist rimonabant elicits anxiety in both strains, indicating no ßArr2 involvement. Interestingly, obesity-induced muscle insulin resistance is improved by MRI-1891 in wild-type but not in ßArr2-KO mice. In C2C12 myoblasts, CB1R activation suppresses insulin-induced akt-2 phosphorylation, preventable by MRI-1891, ßArr2 knockdown or overexpression of CB1R-interacting protein. MRI-1891, but not rimonabant, interacts with nonpolar residues on the N-terminal loop, including F108, and on transmembrane helix-1, including S123, a combination that facilitates ßArr2 bias. Thus, CB1R promotes muscle insulin resistance via ßArr2 signaling, selectively mitigated by a biased CB1R antagonist at reduced risk of central nervous system (CNS) side effects.

SELECTION OF CITATIONS
SEARCH DETAIL