Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12788, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834596

ABSTRACT

Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.

2.
Nanoscale ; 16(12): 5870-5892, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38450538

ABSTRACT

The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.

3.
Phys Chem Chem Phys ; 25(48): 33031-33037, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38037396

ABSTRACT

Bimetallic nanoparticles are attracting increasing attention as effective catalysts because they can exhibit higher efficiencies than their monometallic counterparts. Recent studies show that PdAu nanoparticles can exhibit truly impressive catalytic activity, due to the synergistic effect of their properties. However, fine-tuning the catalytic activity requires an understanding of the full picture of the processes taking place in bimetallic particles of different compositions and structures. Here we study the influence of the structure and composition of PdAu nanoparticles on their electronic properties, charge distribution and adsorption properties (CO and O) using ab initio calculations. Two types of nanoparticles were considered: core-shell (Pd@Au and Au@Pd) and bimetallic alloy (Au-Pd) with an average diameter of 2 nm (321 atoms), having either fcc, icosahedral or amorphous structures. The results obtained on surface charges show the possibility of fine-tuning the surface properties of nanoparticles by modifying their atomic structure and composition. In addition, the adsorption of O and CO on the surface of PdAu nanoparticles with fcc structure has been studied. The obtained adsorption data correlate with the surface charge redistribution and the d-band center. The results of this study thus open up great prospects for tuning the catalytic properties of nanocatalysts by modifying their local atomic environment.

4.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37626451

ABSTRACT

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

5.
ACS Appl Mater Interfaces ; 15(12): 16317-16326, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926821

ABSTRACT

Ultrathin diamond films, or diamanes, are promising quasi-2D materials that are characterized by high stiffness, extreme wear resistance, high thermal conductivity, and chemical stability. Surface functionalization of multilayer graphene with different stackings of layers could be an interesting opportunity to induce proper electronic properties into diamanes. Combination of these electronic properties together with extraordinary mechanical ones will lead to their applications as field-emission displays substituting original devices with light-emitting diodes or organic light-emitting diodes. In the present study, we focus on the electronic properties of fluorinated and hydrogenated diamanes with (111), (110), (0001), (101̅0), and (2̅110) crystallographic orientations of surfaces of various thicknesses by using first-principles calculations and Bader analysis of electron density. We see that fluorine induces an occupied surface electronic state, while hydrogen modifies the occupied bulk state and also induces unoccupied surface states. Furthermore, a lower number of layers is necessary for hydrogenated diamanes to achieve the convergence of the work function in comparison with fluorinated diamanes, with the exception of fluorinated (110) and (2̅110) films that achieve rapid convergence and have the same behavior as other hydrogenated surfaces. This induces a modification of the work function with an increase of the number of layers that makes hydrogenated (2̅110) diamanes the most suitable surface for field-emission displays, better than the fluorinated counterparts. In addition, a quasi-quantitative descriptor of surface dipole moment based on the Tantardini-Oganov electronegativity scale is introduced as the average of bond dipole moments between the surface atoms. This new fundamental descriptor is capable of predicting a priori the bond dipole moment and may be considered as a new useful feature for crystal structure prediction based on artificial intelligence.

6.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839063

ABSTRACT

We observed resonance effects in the Raman scattering of nanodiamonds with an average size of 2-5 nm excited at a wavelength of 1064 nm (1.16 eV). The resonant Raman spectrum of the 2-5 nm nanodiamonds consists of bands at wavelengths of 1325 and 1600 cm-1, a band at 1100-1250 cm-1, and a plateau in the range from 1420 to 1630 cm-1. When excited away from the resonance (at a wavelength of 405 nm, 3.1 eV), the Raman spectrum consists of only three bands at 1325, 1500, and 1600 cm-1. It is important to note that the additional lines (1500 and 1600 cm-1) belong to the sp3-hybridized carbon bonds. The phonon density of states for the nanodiamonds (~1 nm) was calculated using moment tensor potentials (MTP), a class of machine-learning interatomic potentials. The presence of these modes in agreement with the lattice dynamics indicates the existence of bonds with force constants higher than in single-crystal diamonds. The observed resonant phenomena of the Raman scattering and the increase in the bulk modulus are explained by the presence of Tamm states with an energy of electronic transitions of approximately 1 eV, previously observed on the surface of single-crystal diamonds.

7.
Membranes (Basel) ; 12(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36295684

ABSTRACT

Ultra-thin diamond membranes, diamanes, are one of the most intriguing quasi-2D films, combining unique mechanical, electronic and optical properties. At present, diamanes have been obtained from bi- or few-layer graphene in AA- and AB-stacking by full hydrogenation or fluorination. Here, we study the thermal conductivity of diamanes obtained from bi-layer graphene with twist angle θ between layers forming a Moiré pattern. The combination of DFT calculations and machine learning interatomic potentials makes it possible to perform calculations of the lattice thermal conductivity of such diamanes with twist angles θ of 13.2∘, 21.8∘ and 27.8∘ using the solution of the phonon Boltzmann transport equation. Obtained results show that Moiré diamanes exhibit a wide variety of thermal properties depending on the twist angle, namely a sharp decrease in thermal conductivity from high for "untwisted" diamanes to ultra-low values when the twist angle tends to 30∘, especially for hydrogenated Moiré diamanes. This effect is associated with high anharmonicity and scattering of phonons related to a strong symmetry breaking of the atomic structure of Moiré diamanes compared with untwisted ones.

8.
Adv Mater ; 34(42): e2204038, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829689

ABSTRACT

Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10 , encounters a serious complication because of the large upper critical magnetic field HC2 (0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10 : each at% of Nd causes a decrease in TC by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2 (T) âˆ |T - TC |, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.

9.
Materials (Basel) ; 15(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591680

ABSTRACT

Computational methods are increasingly used to support interpreting, assigning and predicting the solid-state nuclear resonance magnetic spectra of materials. Currently, density functional theory is seen to achieve a good balance between efficiency and accuracy in solid-state chemistry. To be specific, density functional theory allows the assignment of signals in nuclear resonance magnetic spectra to specific sites and can help identify overlapped or missing signals from experimental nuclear resonance magnetic spectra. To avoid the difficulties correlated to all-electron calculations, a gauge including the projected augmented wave method was introduced to calculate nuclear resonance magnetic parameters with great success in organic crystals in the last decades. Thus, we developed a gauge including projected augmented pseudopotentials of 21 d elements and tested them on, respectively, oxides or nitrides (semiconductors), calculating chemical shift and quadrupolar coupling constant. This work can be considered the first step to improving the ab initio prediction of nuclear magnetic resonance parameters, and leaves open the possibility for inorganic compounds to constitute an alternative standard compound, with respect to tetramethylsilane, to calculate the chemical shift. Furthermore, this work represents the possibility to obtain results from first-principles calculations, to train a machine-learning model to solve or refine structures using predicted nuclear magnetic resonance spectra.

10.
Adv Mater ; 34(27): e2200924, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35451134

ABSTRACT

Recently, several research groups announced reaching the point of metallization of hydrogen above 400 GPa. Despite notable progress, detecting superconductivity in compressed hydrogen remains an unsolved problem. Following the mainstream of extensive investigations of compressed metal polyhydrides, here small doping of molecular hydrogen by strontium is demonstrated to lead to a dramatic reduction in the metallization pressure to ≈200 GPa. Studying the high-pressure chemistry of the Sr-H system, the formation of several new phases is observed: C2/m-Sr3 H13 , pseudocubic SrH6 , SrH9 with cubic F 4 ¯ 3 m $F\bar{4}3m$ -Sr sublattice, and pseudo tetragonal superionic P1-SrH22 , the metal hydride with the highest hydrogen content (96 at%) discovered so far. High diffusion coefficients of hydrogen in the latter phase DH  = 0.2-2.1 × 10-9 m2 s-1 indicate an amorphous state of the H-sublattice, whereas the strontium sublattice remains solid. Unlike Ca and Y, strontium forms molecular semiconducting polyhydrides, whereas calcium and yttrium polyhydrides are high-TC superconductors with an atomic H sublattice. The discovered SrH22 , a kind of hydrogen sponge, opens a new class of materials with ultrahigh content of hydrogen.

11.
Inorg Chem ; 61(18): 6773-6784, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35476453

ABSTRACT

We proposed an efficient method toward the synthesis of higher tungsten boride WB5-x in the vacuumless direct current atmospheric arc discharge plasma. The crystal structure of the synthesized samples of boron-rich tungsten boride was determined using computational techniques, showing a two-phase system. The ab initio calculations of the energies of various structures with similar X-ray diffraction (XRD) patterns allowed us to determine the composition of the formed higher tungsten boride. We determined the optimal parameters of synthesis to obtain samples with 61.5% WB5-x by volume. The transmission electron microscopy measurements showed that 90% of the particles have sizes of up to 100 nm, whereas the rest of them may have sizes from 125 to 225 nm. Our study shows the possibility of using the proposed vacuumless method as an efficient and inexpensive way to synthesize superhard WB5-x without employing resource-consuming vacuum techniques.

12.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269262

ABSTRACT

Novel magnetic gas sensors are characterized by extremely high efficiency and low energy consumption, therefore, a search for a two-dimensional material suitable for room temperature magnetic gas sensors is a critical task for modern materials scientists. Here, we computationally discovered a novel ultrathin two-dimensional antiferromagnet V3S4, which, in addition to stability and remarkable electronic properties, demonstrates a great potential to be applied in magnetic gas sensing devices. Quantum-mechanical calculations within the DFT + U approach show the antiferromagnetic ground state of V3S4, which exhibits semiconducting electronic properties with a band gap of 0.36 eV. A study of electronic and magnetic response to the adsorption of various gas agents showed pronounced changes in properties with respect to the adsorption of NH3, NO2, O2, and NO molecules on the surface. The calculated energies of adsorption of these molecules were -1.25, -0.91, -0.59, and -0.93 eV, respectively. Obtained results showed the prospective for V3S4 to be used as effective sensing materials to detect NO2 and NO, for their capture, and for catalytic applications in which it is required to lower the dissociation energy of O2, for example, in oxygen reduction reactions. The sensing and reducing of NO2 and NO have great importance for improving environmental protection and sustainable development.

13.
J Chem Theory Comput ; 18(2): 1109-1121, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34990122

ABSTRACT

We propose a methodology for the calculation of nanohardness by atomistic simulations of nanoindentation. The methodology is enabled by machine-learning interatomic potentials fitted on the fly to quantum-mechanical calculations of local fragments of the large nanoindentation simulation. We test our methodology by calculating nanohardness, as a function of load and crystallographic orientation of the surface, of diamond, AlN, SiC, BC2N, and Si and comparing it to the calibrated values of the macro- and microhardness. The observed agreement between the computational and experimental results from the literature provides evidence that our method has sufficient predictive power to open up the possibility of designing materials with exceptional hardness directly from first principles. It will be especially valuable at the nanoscale where the experimental measurements are difficult, while empirical models fitted to macrohardness are, as a rule, inapplicable.

14.
Phys Chem Chem Phys ; 23(46): 26178-26184, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34807199

ABSTRACT

Oxidation is a unique process that significantly changes the structure and properties of a material. Doping of h-BN by oxygen is a hot topic in material science leading to the possibility of synthesis of novel 2D structures with customized electronic properties. It is still unclear how the atomic structure changes in the presence of external atoms during the oxidation of h-BN. We predict novel two-dimensional (2D) arrangements of boron oxynitride using the evolutionary algorithm of crystal structure prediction USPEX. All considered structures demonstrate semiconducting properties with a reduced bandgap compared with h-BN. Both molecular dynamics and phonon calculations show the dynamical stability of the new 2D B5N3O2 phase, and our calculations demonstrate that it can form a bulk layered structure with an interlayer distance larger than that of pure h-BN. The optical characterization shows a redshift of the absorption spectrum compared with pure h-BN. Incorporation of oxygen into the structure of 2D BN during synthesis or oxidation can dramatically change the covalent network of h-BN while preserving its two-dimensionality and flatness, following the presence of local dipole moments which could improve the piezoelectric properties.

15.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751670

ABSTRACT

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

16.
ACS Nano ; 15(4): 6861-6871, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33730478

ABSTRACT

To study the possibility for silicene to be employed as a field-effect transistor (FET) pressure sensor, we explore the chemistry of monolayer and multilayered silicene focusing on the change in hybridization under pressure. Ab initio computations show that the effect of pressure depends greatly on the thickness of the silicene film, but also reveals the influence of real experimental conditions, where the pressure is not hydrostatic. For this purpose, we introduce anisotropic strain states. With pure uniaxial stress applied to silicene layers, a path for sp3 silicon to sp3d silicon is found, unlike with pure hydrostatic pressure. Even with mixed-mode stress (in-plane pressure half of the out-of-plane one), we find no such path. In addition to introducing our theoretical approach to study 2D materials, we show how the hybridization change of silicene under pressure makes it a good FET pressure sensor.

17.
Nat Commun ; 12(1): 273, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431840

ABSTRACT

Following the discovery of high-temperature superconductivity in the La-H system, we studied the formation of new chemical compounds in the barium-hydrogen system at pressures from 75 to 173 GPa. Using in situ generation of hydrogen from NH3BH3, we synthesized previously unknown superhydride BaH12 with a pseudocubic (fcc) Ba sublattice in four independent experiments. Density functional theory calculations indicate close agreement between the theoretical and experimental equations of state. In addition, we identified previously known P6/mmm-BaH2 and possibly BaH10 and BaH6 as impurities in the samples. Ab initio calculations show that newly discovered semimetallic BaH12 contains H2 and H3- molecular units and detached H12 chains which are formed as a result of a Peierls-type distortion of the cubic cage structure. Barium dodecahydride is a unique molecular hydride with metallic conductivity that demonstrates the superconducting transition around 20 K at 140 GPa.

18.
J Phys Chem Lett ; 12(1): 32-40, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33296213

ABSTRACT

We conducted a joint experimental-theoretical investigation of the high-pressure chemistry of europium polyhydrides at pressures of 86-130 GPa. We discovered several novel magnetic Eu superhydrides stabilized by anharmonic effects: cubic EuH9, hexagonal EuH9, and an unexpected cubic (Pm3n) clathrate phase, Eu8H46. Monte Carlo simulations indicate that cubic EuH9 has antiferromagnetic ordering with TN of up to 24 K, whereas hexagonal EuH9 and Pm3n-Eu8H46 possess ferromagnetic ordering with TC = 137 and 336 K, respectively. The electron-phonon interaction is weak in all studied europium hydrides, and their magnetic ordering excludes s-wave superconductivity, except, perhaps, for distorted pseudohexagonal EuH9. The equations of state predicted within the DFT+U approach (U - J were found within linear response theory) are in close agreement with the experimental data. This work shows the great influence of the atomic radius on symmetry-breaking distortions of the crystal structures of superhydrides and on their thermodynamic stability.

19.
ACS Appl Mater Interfaces ; 12(49): 55189-55194, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33225682

ABSTRACT

Here, we present an ab initio study of ways for engineering electronic and optical properties of bilayered graphene nanomeshes with various stacking types via mechanical deformations. Strong evolution of the electronic structure and absorption spectra during deformation is studied and analyzed. The obtained results are of significant importance and open up new prospects for using such nanomeshes as materials with easily controlled properties in electronic and optoelectronic nanodevices.

20.
Adv Sci (Weinh) ; 7(16): 2000775, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32832351

ABSTRACT

The recent theoretical prediction of a new compound, WB5, has spurred the interest in tungsten borides and their possible implementation in industry. In this research, the experimental synthesis and structural description of a boron-rich tungsten boride and measurements of its mechanical properties are performed. The ab initio calculations of the structural energies corresponding to different local structures make it possible to formulate the rules determining the likely local motifs in the disordered versions of the WB5 structure, all of which involve boron deficit. The generated disordered WB4.18 and WB4.86 models both perfectly match the experimental data, but the former is the most energetically preferable. The precise crystal structure, elastic constants, hardness, and fracture toughness of this phase are calculated, and these results agree with the experimental findings. Because of the compositional and structural similarity with predicted WB5, this phase is denoted as WB5- x . Previously incorrectly referred to as "WB4," it is distinct from earlier theoretically suggested WB4, a phase with a different crystal structure that has not yet been synthesized and is predicted to be thermodynamically stable at pressures above 1 GPa. Mild synthesis conditions (enabling a scalable synthesis) and excellent mechanical properties make WB5- x a very promising material for drilling technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...