Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.905
2.
Int J Nanomedicine ; 19: 5109-5123, 2024.
Article En | MEDLINE | ID: mdl-38846643

Introduction: Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. Methods: In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. Results: The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. Conclusion: The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.


Spinal Fusion , Spinal Fusion/instrumentation , Spinal Fusion/methods , Animals , Mice , Rats , Calcium Phosphates/chemistry , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Lumbar Vertebrae/surgery , Rats, Sprague-Dawley , Male , Compressive Strength , Cell Proliferation/drug effects , Bone Cements/chemistry , Smart Materials/chemistry , Cell Adhesion/drug effects
3.
Anim Reprod Sci ; 266: 107513, 2024 May 31.
Article En | MEDLINE | ID: mdl-38843662

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.

4.
Front Public Health ; 12: 1396152, 2024.
Article En | MEDLINE | ID: mdl-38841672

Background: Spondylitis caused by Brucella infection is a rare but challenging condition, and its successful management depends on timely diagnosis and appropriate treatment. This study reports two typical cases of thoracic and lumbar brucellosis spondylitis, highlighting the pivotal roles of real-time polymerase chain reaction (real-time PCR) detection and surgical intervention. Case presentation: Case 1 involved a 49-year-old male shepherd who presented with a 6-month history of fever (40°C), severe chest and back pain, and 2-week limited lower limb movement with night-time exacerbation. Physical examination revealed tenderness and percussion pain over the T9 and T10 spinous processes, with grade 2 muscle strength in the lower limbs. CT showed bone destruction of the T9 and T10 vertebrae with narrowing of the intervertebral space, whereas MRI demonstrated abnormal signals in the T9-T10 vertebrae, a spinal canal abscess, and spinal cord compression. The Rose Bengal plate agglutination test was positive. Case 2 was a 59-year-old man who complained of severe thoracolumbar back pain with fever (39.0°C) and limited walking for 2 months. He had a 2.5 kg weight loss and a history of close contact with sheep. The Rose Bengal test was positive, and the MRI showed inflammatory changes in the L1 and L2 vertebrae. Diagnosis and treatment: real-time PCR confirmed Brucella infection in both cases. Preoperative antimicrobial therapy with doxycycline, rifampicin, and ceftazidime-sulbactam was administered for at least 2 weeks. Surgical management involved intervertebral foraminotomy-assisted debridement, decompression, internal fixation, and bone grafting under general anesthesia. Postoperative histopathological examination with HE and Gram staining further substantiated the diagnosis. Outcomes: both patients experienced significant pain relief and restored normal lower limb movement at the last follow-up (4-12 weeks) after the intervention. Conclusion: Real-time PCR detection offers valuable diagnostic insights for suspected cases of brucellosis spondylitis. Surgical treatment helps in infection control, decompression of the spinal cord, and restoration of stability, constituting a necessary and effective therapeutic approach. Prompt diagnosis and comprehensive management are crucial for favorable outcomes in such cases.


Brucellosis , Lumbar Vertebrae , Real-Time Polymerase Chain Reaction , Spondylitis , Thoracic Vertebrae , Humans , Male , Brucellosis/surgery , Brucellosis/diagnosis , Brucellosis/drug therapy , Middle Aged , Spondylitis/surgery , Spondylitis/diagnostic imaging , Spondylitis/drug therapy , Lumbar Vertebrae/surgery , Thoracic Vertebrae/surgery , Brucella/isolation & purification , Anti-Bacterial Agents/therapeutic use , Magnetic Resonance Imaging
5.
Food Sci Nutr ; 12(5): 3360-3376, 2024 May.
Article En | MEDLINE | ID: mdl-38726415

The increasing incidence of hyperlipidemia is a serious threat to public health. The development of effective and safe lipid-lowering drugs with few side effects is necessary. The purpose of this study was to assess the lipid-lowering activity of Sanghuangporus vaninii extract (SVE) in rat experiments and reveal the molecular mechanism by transcriptome analysis. Hyperlipidemia was induced in the animals using a high-fat diet for 4 weeks. At the end of the 4th week, hyperlipidemic rats were assigned into two control groups (model and positive simvastatin control) and three treatment groups that received SVE at 200, 400, or 800 mg kg-1 day-1 for another 4 weeks. A last control group comprised normal chow-fed rats. At the end of the 8th week, rats were sacrificed and lipid serum levels, histopathology, and liver transcriptome profiles were determined. SVE was demonstrated to relieve the lipid disorder and improve histopathological liver changes in a dose-dependent manner. The transcriptomic analysis identified changes in hepatocyte gene activity for major pathways including steroid biosynthesis, bile secretion, cholesterol metabolism, AMPK signaling, thyroid hormone signaling, and glucagon signaling. The changed expression of crucial genes in the different groups was confirmed by qPCR. Collectively, this study revealed that SVE could relieve hyperlipidemia in rats, the molecular mechanism might be to promote the metabolism of lipids and the excretion of cholesterol, inhibit the biosynthesis of cholesterol by activating the AMPK signaling pathway, the thyroid hormone signaling pathway, and the glucagon signaling pathway.

6.
J Infect Dev Ctries ; 18(4): 651-654, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38728638

INTRODUCTION: Mycobacterium marinum infection rarely occurs and has atypical symptoms. It is challenging to distinguish disseminated M. marinum infection from multifocal dermatosis caused by other factors clinically. CASE PRESENTATION: Herein, we reported a 68-year-old male patient with Human Immunodeficiency Virus (HIV) who presented redness and swelling in his left hand after being stabbed by marine fish for over 2 months. Mycobacterium tuberculosis infection was considered according to biochemical and pathological examinations, while empirical anti-infection treatment was ineffective. RESULTS: The metagenomic next-generation sequencing (mNGS) detected a large amount of M. marinum sequences, and the patient was finally diagnosed with M. marinum infection. After one month of combination therapy with ethambutol, rifabutin, moxifloxacin, and linezolid, the swelling disappeared significantly. In this case, the successful application of mNGS in diagnosing and treating M. marinum infection has improved the understanding of the microbe both in the laboratory and clinically, especially in patients with HIV. CONCLUSIONS: For diseases with atypical symptoms or difficulty in determining the pathogens, mNGS is suggested in clinical procedures for rapid and accurate diagnosis and treatment.


HIV Infections , Mycobacterium Infections, Nontuberculous , Mycobacterium marinum , Humans , Male , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Aged , Mycobacterium marinum/isolation & purification , Mycobacterium marinum/genetics , HIV Infections/complications , High-Throughput Nucleotide Sequencing , Metagenomics , Ethambutol/therapeutic use , Anti-Bacterial Agents/therapeutic use
7.
IEEE Trans Cybern ; PP2024 May 09.
Article En | MEDLINE | ID: mdl-38722716

This article delves into the predefined-time output-feedback leader-following consensus problem of uncertain pure-feedback nonlinear multiagent systems for the first time. To streamline subsequent design, the original systems in pure-feedback form are first transformed into canonical systems. Following this, a distributed predefined-time extended state observer (ESO) and a local predefined-time ESO are developed to reconstruct the unknown states/lumped disturbance of the transformed leader system and follower systems, respectively. Based on the estimated states and utilizing a bounded regulation function, two nonsingular and nonconservative predefined-time control laws are formulated to achieve consensus tracking. The proposed method showcases the following advantages: 1) the actual convergence time rather than the upper bound of the convergence time (UBCT) of the tracking errors can be explicitly specified a priori regardless of the initial conditions in a bounded region, optimizing control energy usage and 2) the system overshoot could be effectively reduced by selecting appropriate parameters for the regulation function. Finally, numerical examples are conducted to verify the obtained results.

8.
FASEB J ; 38(10): e23661, 2024 May 31.
Article En | MEDLINE | ID: mdl-38733310

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Fibroblast Growth Factors , Mice, Knockout , Microtubules , Pruritus , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Pruritus/metabolism , Pruritus/genetics , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Humans , HEK293 Cells , Microtubules/metabolism , Ganglia, Spinal/metabolism , Male , Mice, Inbred C57BL , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics
9.
Front Microbiol ; 15: 1319886, 2024.
Article En | MEDLINE | ID: mdl-38690362

Introduction: Pholiota nameko is a widely consumed edible fungus. This study focuses on two crucial developmental stages of Pholiota nameko, namely, mycelium and ascospores. The objectives of this research were to investigate changes in microbial diversity and community structure during the growth of Pholiota nameko and to analyze the adaptability of the dominant strains to their respective habitats through metabolic. Methods: Specifically, we conducted second-generation sequencing of the 16S rRNA gene (Illumina) on samples obtained from these stages. In addition, we isolated and characterized endophytes present in Pholiota nameko, focusing on examining the impact of dominant endophyte genera on autolysis. We also conducted a metabolic pathway analysis. Results and discussion: The results unveiled 578,414 valid sequences of Pholiota nameko endophytic fungi. At the phylum level, the dominant taxa were Basidiomycota, Ascomycota, Zoopagomycota, and Mucoromycota. At the genus level, the dominant taxa observed were Pholiota, Inocybe, Fusarium, and Hortiboletus. For endophytic bacteria, we obtained 458,475 valid sequences. The dominant phyla were Proteobacteria, TM6, Firmicutes, and Bacteroidetes, while the dominant genera were Edaphobacter, Xanthomonas, Burkholderia, and Pseudomonas. Moreover, we identified the isolated strains in Pholiota nameko using 16S rDNA, and most of them were found to belong to the genus Pseudomonas, with Pseudomonas putida being the most prevalent strain. The findings revealed that the Pseudomonas putida strain has the ability to slow down the breakdown of soluble proteins and partially suppress the metabolic processes that generate superoxide anion radicals in Pholiota nameko, thereby reducing autolysis. Additionally, our results demonstrated that molybdenum enzyme-mediated anaerobic oxidative phosphorylation reactions were the primary energy metabolism pathway in the Pseudomonas putida strain. This suggests that the molybdenum cofactor synthesis pathway might be the main mechanism through which Pholiota nameko adapts to its complex and diverse habitats.

10.
Sci Bull (Beijing) ; 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38702279

An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin (H&E) histology, such as frozen section, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography (D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group (n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma (IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ (DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests (n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%; only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow (approximately 3 min) was significantly shorter than that required for traditional procedures (approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.

11.
Heliyon ; 10(9): e30073, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707454

New generation employees in the energy industry generally suffer from several problems such as poor psychological endurance, lack of professional literacy, excessive mental stress, and low labor enthusiasm, which will affect the employee's individual contextual performance and stability of the labor market. In the context of energy transition, therefore, it is of practical significance to solve their problems in routine work and identify the factors affecting the contextual performance of next generation employees in the energy industry. In this paper, the theoretical model with job satisfaction as an independent variable, organizational commitment as a mediator, the sense of self-efficacy as a moderator, and contextual performance as a dependent variable is established; and several research hypotheses are proposed on the basis of the two-factor theory, psychological contract theory, and self-efficacy theory. The following conclusions are made through the testing of hypotheses based on questionnaire investigation: Job satisfaction of new generation employees in the new energy industry positively affects the contextual performance; organizational commitment plays a mediating role between job satisfaction and contextual performance; the sense of self-efficacy plays a role of moderating job satisfaction, organizational commitment, and contextual performance. There is a mediated moderation effect and regulated mediation effect in the model. These conclusions are of great significance to the healthy development of new generation employees in the energy industry.

12.
ACS Omega ; 9(17): 18854-18861, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708241

The use of submerged orifices for bubble generation is ubiquitous in industries with wettability known to influence the bubble departure diameter. In this study, we investigated bubble generation and departure from the orifices (0.3-2 mm) drilled on hydrophobic perfluoroalkoxy (PFA) tubes in water. By varying the gas inflow rate (33 to 200 mL/min), we found that the Sauter mean diameter closely matched those generated by hydrophilic quartz orifices. However, monodispersed bubbles were formed on the PFA tube compared to those on quartz with much wider size distributions. By examining the dynamic bubbling process, we confirmed its agreement with Tate's law, which was originally developed for quasi-steady conditions and emphasizes a balance between capillary and buoyancy forces. However, it should be noted that dynamic conditions lead to an increase in bubble volume compared to the quasi-steady condition despite following the same principle, which is explained by the continuous gas inflow when the bubble departs from the orifice at a necking stage. The above understandings enable generation of monodispersed bubbles under dynamic conditions, benefiting industries requiring precise control on bubble size, such as the bubble assisted wet etching and cleaning processes in semiconductor fabrication.

13.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705956

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Astragalus propinquus/genetics , Astragalus propinquus/metabolism , Multigene Family , Genome, Plant , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Astragalus Plant/genetics , Astragalus Plant/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological/genetics , Transcriptome/genetics , Plant Growth Regulators/metabolism
14.
J Clin Periodontol ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38708491

AIM: To qualitatively and quantitatively evaluate the formation and maturation of peri-implant soft tissues around 'immediate' and 'delayed' implants. MATERIALS AND METHODS: Miniaturized titanium implants were placed in either maxillary first molar (mxM1) fresh extraction sockets or healed mxM1 sites in mice. Peri-implant soft tissues were evaluated at multiple timepoints to assess the molecular mechanisms of attachment and the efficacy of the soft tissue as a barrier. A healthy junctional epithelium (JE) served as positive control. RESULTS: No differences were observed in the rate of soft-tissue integration of immediate versus delayed implants; however, overall, mucosal integration took at least twice as long as osseointegration in this model. Qualitative assessment of Vimentin expression over the time course of soft-tissue integration indicated an initially disorganized peri-implant connective tissue envelope that gradually matured with time. Quantitative analyses showed significantly less total collagen in peri-implant connective tissues compared to connective tissue around teeth around implants. Quantitative analyses also showed a gradual increase in expression of hemidesmosomal attachment proteins in the peri-implant epithelium (PIE), which was accompanied by a significant inflammatory marker reduction. CONCLUSIONS: Within the timeframe examined, quantitative analyses showed that connective tissue maturation never reached that observed around teeth. Hemidesmosomal attachment protein expression levels were also significantly reduced compared to those in an intact JE, although quantitative analyses indicated that macrophage density in the peri-implant environment was reduced over time, suggesting an improvement in PIE barrier functions. Perhaps most unexpectedly, maturation of the peri-implant soft tissues was a significantly slower process than osseointegration.

15.
J Adv Res ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38704089

INTRODUCTION: Aging of hematopoietic stem cells (HSCs) has emerged as an important challenge to human health. Recent advances have raised the prospect of rejuvenating aging HSCs via specific medical interventions, including pharmacological treatments. Nonetheless, efforts to develop such drugs are still in infancy until now. OBJECTIVES: We aimed to screen the prospective agents that can rejuvenate aging HSCs and explore the potential mechanisms. METHODS: We screened a set of natural anti-aging compounds through oral administration to sub-lethally irradiated mice, and identified 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) as a potent rejuvenating agent for aging HSCs. Then naturally aged mice were used for the follow-up assessment to determine the HSC rejuvenating potential of TSG. Finally, based on the transcriptome and DNA methylation analysis, we validated the role of the AMP-activated protein kinase (AMPK)-ten-eleven-translocation 2 (Tet2) axis (the AMPK-Tet2 axis) as the underlying mechanisms of TSG for ameliorating HSCs aging. RESULTS: TSG treatment not only significantly increased the absolute number of common lymphoid progenitors (CLPs) along with B lymphocytes, but also boosted the HSCs/CLPs repopulation potential of aging mice. Further elaborated mechanism research demonstrated that TSG supplementation restored the stemness of aging HSCs, as well as promoted an epigenetic reprograming that was associated with an improved regenerative capacity and an increased rate of lymphopoiesis. Such effects were diminished when the mice were co-treated with an AMPK inhibitor, or when it was performed in Tet2 knockout mice as well as senescent cells assay. CONCLUSION: TSG is effective in rejuvenating aging HSCs by modulating the AMPK- Tet2 axis and thus represents a potential candidate for developing effective HSC rejuvenating therapies.

16.
Front Neurol ; 15: 1381370, 2024.
Article En | MEDLINE | ID: mdl-38803646

Objectives: The aim of this study was to extract radiomic features from vertebrobasilar artery calcification (VBAC) on head computed tomography (CT) images and investigate its diagnostic performance to identify culprit lesions responsible for acute cerebral infarctions. Methods: Patients with intracranial atherosclerotic disease who underwent vessel wall MRI (VW-MRI) and head CT examinations from a single center were retrospectively assessed for VBAC visual and textural analyses. Each calcified plaque was classified by the likelihood of having caused an acute cerebral infarction identified on VW-MRI as culprit or non-culprit. A predefined set of texture features extracted from VBAC segmentation was assessed using the minimum redundancy and maximum relevance method. Five key features were selected to integrate as a radiomic model using logistic regression by the Aikaike Information Criteria. The diagnostic value of the radiomic model was calculated for discriminating culprit lesions over VBAC visual assessments. Results: A total of 1,218 radiomic features were extracted from 39 culprit and 50 non-culprit plaques, respectively. In the VBAC visual assessment, culprit plaques demonstrated more observed presence of multiple calcifications, spotty calcification, and intimal predominant calcification than non-culprit lesions (all p < 0.05). In the VBAC texture analysis, 55 (4.5%) of all extracted features were significantly different between culprit and non-culprit plaques (all p < 0.05). The radiomic model incorporating 5 selected features outperformed multiple calcifications [AUC = 0.81 with 95% confidence interval (CI) of 0.72, 0.90 vs. AUC = 0.61 with 95% CI of 0.49, 0.73; p = 0.001], intimal predominant calcification (AUC = 0.67 with 95% CI of 0.58, 0.76; p = 0.04) and spotty calcification (AUC = 0.62 with 95% CI of 0.52, 0.72; p = 0.005) in the identification of culprit lesions. Conclusion: Culprit plaques in the vertebrobasilar artery exhibit distinct calcification radiomic features compared to non-culprit plaques. CT texture analysis of VBAC has potential value in identifying lesions responsible for acute cerebral infarctions, which may be helpful for stroke risk stratification in clinical practice.

17.
J Nanobiotechnology ; 22(1): 299, 2024 May 30.
Article En | MEDLINE | ID: mdl-38812031

BACKGROUND: Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS: We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS: We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION: The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.


Diterpenes, Kaurane , Glutathione , Leukemia, Myeloid, Acute , Liposomes , Reactive Oxygen Species , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Glutathione/metabolism , Glutathione/chemistry , Liposomes/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Humans , Reactive Oxygen Species/metabolism , Animals , Mice , Cell Line, Tumor , Toll-Like Receptor 2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects
18.
Mil Med Res ; 11(1): 32, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812059

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Mitochondria , Mitophagy , Humans , Mitochondria/metabolism , Mitochondria/physiology , Mitophagy/physiology , Mitophagy/drug effects , Mitochondrial Dynamics/physiology
19.
Molecules ; 29(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38731519

Urban tailwater typically has a low carbon-to-nitrogen ratio and adding external carbon sources can effectively improve the denitrification performance of wastewater. However, it is difficult to determine the dosage of additional carbon sources, leading to insufficient or excessive addition. Therefore, it is necessary to prepare solid slow-release carbon source (SRC) materials to solve the difficulty in determining the dosage of carbon sources. This study selected two SRCs of slow-release carbon source 1 (SRC1) and slow-release carbon source 2 (SRC2), with good slow-release performance after static carbon release and batch experiments. The composition of SRC1 was: hydroxypropyl methylcellulose/disodium fumarate/polyhydroxy alkanoate (HPMC/DF/PHA) at a ratio of 3:2:4, with an Fe3O4 mass fraction of 3%. The composition of SRC2 was: HPMC/DF/PHA with a ratio of 1:1:1 and an Fe3O4 mass fraction of 3%. The fitted equations of carbon release curves of SRC1 and SRC2 were y = 61.91 + 7190.24e-0.37t and y = 47.92 + 8770.42e-0.43t, respectively. The surfaces of SRC1 and SRC2 had a loose and porous morphological structure, which could increase the specific surface area of materials and be more conducive to the adhesion and metabolism of microorganisms. The experimental nitrogen removal by denitrification with SRCs showed that when the initial total nitrogen concentration was 40.00 mg/L, the nitrate nitrogen (NO3--N) concentrations of the SRC1 and SRC2 groups on the 10th day were 2.57 and 2.66 mg/L, respectively. On the 20th day, the NO3--N concentrations of the SRC1 and SRC2 groups were 1.67 and 2.16 mg/L, respectively, corresponding to removal efficiencies of 95.83% and 94.60%, respectively. The experimental results indicated that SRCs had a good nitrogen removal effect. Developing these kinds of materials can provide a feasible way to overcome the difficulty in determining the dosage of carbon sources in the process of heterotrophic denitrification.

20.
iScience ; 27(5): 109793, 2024 May 17.
Article En | MEDLINE | ID: mdl-38736547

Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.

...