Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Comput Struct Biotechnol J ; 23: 1897-1911, 2024 Dec.
Article En | MEDLINE | ID: mdl-38721587

Background: In recent years, mRNA-based vaccines with promising safety and functional characteristics have gained significant momentum in cancer immunotherapy. However, stable immunological molecular subtypes of lung adenocarcinoma (LUAD) and novel tumor antigens for LUAD mRNA vaccine development remain elusive. Therefore, a novel approach is urgently needed to identify suitable LUAD subtypes and potential tumor antigens. Methods: The Cancer Genome Atlas (TCGA), the Genotype Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases were utilized to retrieve gene expression data. The LUAD Immunological Multi-Omics Classification (LIMOC) system was developed using seven machine learning (ML) algorithms by performing integrative immunogenomic analysis of single-cell and bulk tissue transcriptome profiling. Subsequently, a panel of approaches was applied to identify novel tumor antigens. Results: First, the LIMOC system was construct to identify three subtypes: LIMOC1, LIMOC2, and LIMOC3. Second, we identified CHIT1, LILRA4, and MEP1A as novel tumor antigens in LUAD; these genes were up-regulated, amplified, and mutated, and showed a positive association with APC infiltration, making them promising candidates for designing mRNA vaccines. Notably, the LIMOC2 subtype had the worst prognosis and could benefit most from mRNA immunization. Furthermore, we performed a comprehensive in silico screening of approximately 2000 compounds and identified Sorafenib and Azacitidine as potential subtype-specific therapeutic agents. Conclusions: Overall, our study established a robust LIMOC system and identified CHIT1, LILRA4, and MEP1A as promising tumor antigen candidates for development of anti-LUAD mRNA vaccines, particularly for the LIMOC2 subtype.

2.
J Immunol ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767414

The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.

3.
Plant Cell Environ ; 47(6): 2058-2073, 2024 Jun.
Article En | MEDLINE | ID: mdl-38404129

Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.


Gene Expression Regulation, Plant , Phytochrome , Plant Proteins , Populus , Populus/genetics , Populus/radiation effects , Populus/metabolism , Populus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Phytochrome/metabolism , Phytochrome/genetics , Light , Indoleacetic Acids/metabolism , Plants, Genetically Modified , Trees/physiology , Trees/genetics , Trees/metabolism
4.
New Phytol ; 241(4): 1646-1661, 2024 Feb.
Article En | MEDLINE | ID: mdl-38115785

Perennial trees in boreal and temperate regions undergo growth cessation and bud set under short photoperiods, which are regulated by phytochrome B (phyB) photoreceptors and PHYTOCHROME INTERACTING FACTOR 8 (PIF8) proteins. However, the direct signaling components downstream of the phyB-PIF8 module remain unclear. We found that short photoperiods suppressed the expression of miR156, while upregulated the expression of miR156-targeted SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 16 (SPL16) and SPL23 in leaves and shoot apices of Populus trees. Accordingly, either overexpression of MIR156a/c or mutagenesis of SPL16/23 resulted in the attenuation of growth cessation and bud set under short days (SD), whereas overexpression of SPL16 and SPL23 conferred early growth cessation. We further showed that SPL16 and SPL23 directly suppressed FLOWERING LOCUS T2 (FT2) expression while promoted BRANCHED1 (BRC1.1 and BRC1.2) expression. Moreover, we revealed that PIF8.1/8.2, positive regulators of growth cessation, directly bound to promoters of MIR156a and MIR156c and inhibited their expression to modulate downstream pathways. Our results reveal a connection between the phyB-PIF8 module-mediated photoperiod perception and the miR156-SPL16/23-FT2/BRC1 regulatory cascades in SD-induced growth cessation. Our study provides insights into the rewiring of a conserved miR156-SPL module in the regulation of seasonal growth in Populus trees.


Phytochrome , Populus , Photoperiod , Trees , Plant Proteins/metabolism , Seasons , Phytochrome/metabolism , Gene Expression Regulation, Plant
5.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5759-5766, 2023 Nov.
Article Zh | MEDLINE | ID: mdl-38114171

Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.


Paeonia , Real-Time Polymerase Chain Reaction/methods , Paeonia/genetics , Actins/genetics , Reproducibility of Results , Transcriptome , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Reference Standards , Gene Expression Profiling/methods
6.
Eur Radiol ; 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37981590

OBJECTIVES: To compare prostate-specific membrane antigen (PSMA) PET with multiparametric MRI (mpMRI) in the diagnosis of pretreatment prostate cancer (PCa). METHODS: Pubmed, Embase, Medline, Web of Science, and Cochrane Library were searched for eligible studies published before June 22, 2022. We assessed risk of bias and applicability by using QUADAS-2 tool. Data synthesis was performed with Stata 17.0 software, using the "midas" and "meqrlogit" packages. RESULTS: We included 29 articles focusing on primary cancer detection, 18 articles about primary staging, and two articles containing them both. For PSMA PET versus mpMRI in primary PCa detection, sensitivities and specificities in the per-patient analysis were 0.90 and 0.84 (p<0.0001), and 0.66 and 0.60 (p <0.0001), and in the per-lesion analysis they were 0.79 and 0.78 (p <0.0001), and 0.84 and 0.82 (p <0.0001). For the per-patient analysis of PSMA PET versus mpMRI in primary staging, sensitivities and specificities in extracapsular extension detection were 0.59 and 0.66 (p =0.005), and 0.79 and 0.76 (p =0.0074), and in seminal vesicle infiltration (SVI) detection they were 0.51 and 0.60 (p =0.0008), and 0.93 and 0.96 (p =0.0092). For PSMA PET versus mpMRI in lymph node metastasis (LNM) detection, sensitivities and specificities in the per-patient analysis were 0.68 and 0.46 (p <0.0001), and 0.91 and 0.90 (p =0.81), and in the per-lesion analysis they were 0.67 and 0.36 (p <0.0001), and 0.99 and 0.99 (p =0.18). CONCLUSION: PSMA PET has higher diagnostic value than mpMRI in the detection of primary PCa. Regarding the primary staging, mpMRI has potential advantages in SVI detection, while PSMA PET has relative advantages in LNM detection. CLINICAL RELEVANCE STATEMENT: The integration of prostate-specific membrane antigen (PSMA) PET into the diagnostic pathway may be helpful for improving the accuracy of prostate cancer detection. However, further studies are needed to address the cost implications and evaluate its utility in specific patient populations or clinical scenarios. Moreover, we recommend the combination of PSMA PET and mpMRI for cancer staging. KEY POINTS: • Prostate-specific membrane antigen PET has higher sensitivity and specificity for primary tumor detection in prostate cancer compared to multiparametric MRI. • Prostate-specific membrane antigen PET also has significantly better sensitivity and specificity for lymph node metastases of prostate cancer compared to multiparametric MRI. • Multiparametric MRI has better accuracy for extracapsular extension and seminal vesicle infiltration compared to ate-specific membrane antigen PET.

7.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37877715

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Basement Membrane , Endothelial Cells , Iridoviridae , Lymphatic Vessels , Basement Membrane/metabolism , Basement Membrane/virology , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Iridoviridae/physiology , Lymphatic Vessels/cytology , Cell Proliferation , Cell Movement , Blood Vessels/cytology , Host Microbial Interactions
8.
PLoS Biol ; 21(9): e3002285, 2023 09.
Article En | MEDLINE | ID: mdl-37733785

The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.


Aldehyde-Lyases , Carbon , Acetyl Coenzyme A , Carbon/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Glucose/metabolism , Metabolic Engineering
9.
Sci Adv ; 9(22): eadd3580, 2023 06 02.
Article En | MEDLINE | ID: mdl-37262187

Although species can arise through hybridization, compelling evidence for hybrid speciation has been reported only rarely in animals. Here, we present phylogenomic analyses on genomes from 12 macaque species and show that the fascicularis group originated from an ancient hybridization between the sinica and silenus groups ~3.45 to 3.56 million years ago. The X chromosomes and low-recombination regions exhibited equal contributions from each parental lineage, suggesting that they were less affected by subsequent backcrossing and hence could have played an important role in maintaining hybrid integrity. We identified many reproduction-associated genes that could have contributed to the development of the mixed sexual phenotypes characteristic of the fascicularis group. The phylogeny within the silenus group was also resolved, and functional experimentation confirmed that all extant Western silenus species are susceptible to HIV-1 infection. Our study provides novel insights into macaque evolution and reveals a hybrid speciation event that has occurred only very rarely in primates.


Genomics , Macaca , Animals , Macaca/genetics , Phylogeny , Genome , Hybridization, Genetic
11.
Environ Technol ; 44(27): 4173-4187, 2023 Nov.
Article En | MEDLINE | ID: mdl-35611631

Cr(III) as one of the most concerned potentially toxic elements, is discharged from relevant industries and Cr(VI) reduction. Hydrogel-based adsorption could be one of the promising approaches for Cr(III) removal. Featured with environmental friendliness and low cost, carboxymethyl cellulose (CMC) was employed for the hydrogel synthesis, and attapulgite (APT) could be used to strengthen its stability. However, the adsorption performance and mechanisms need to be examined. In the present study, carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide)/ attapulgite (CMC-g-p(AA-co-AM)/APT) was synthesised via in situ copolymerisation. Its efficacy for removing Cr(III) from an aqueous solution was investigated using batch adsorption experiments. Results showed that the introduction of APT enhanced the thermal stability but decreased the swelling performance of the hydrogel. The prepared hydrogel could strongly adsorb Cr(III) at a wide pH range of 3.0-7.0. Cr(III) can be efficiently removed by the composite hydrogel within 1-2 h. At low concentration, CMC-g-p(AA-co-AM)/APT could slightly adsorbed more Cr(III) than CMC-g-p(AA-co-AM). The maximum absorption of CMC-g-p(AA-co-AM) and CMC-g-p(AA-co-AM)/APT were 74.8 and 47.7 mg/g at 298 K, respectively. The negative value of ΔHo and ΔGo indicated the adsorption of Cr(III) onto the two studied hydrogels is an exothermic and spontaneous process. Ion exchange and complexation, as implied by EDS, FT-IR and XPS, combining with electrostatic attraction are the possible adsorption mechanisms for Cr(III) onto the prepared hydrogels. All the results above suggests that the composite hydrogel CMC-g-p(AA-co-AM)/APT can be a promising candidate for the removal of Cr(III) from waste water.


Hydrogels , Water Pollutants, Chemical , Carboxymethylcellulose Sodium , Adsorption , Acrylamide , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Kinetics , Chromium/analysis
12.
Fish Shellfish Immunol ; 132: 108450, 2023 Jan.
Article En | MEDLINE | ID: mdl-36442705

Chitinases, a group of glycosylase hydrolases that can hydrolyze chitin, are involved in immune regulation in animals. White spot syndrome virus (WSSV) causes huge losses to crustacean aquaculture every year. We identified a novel chitinase Chi6 from Pacific white shrimp Penaeus vannamei, which contains a catalytic domain but no chitin-binding domain. The Chi6 expression was regulated by multiple immune signaling pathways and increased after immune stimulations. Silencing of Chi6 by RNAi in vivo did not affect Vibrio parahaemolyticus infection, but significantly increased the survival rate of WSSV-infected shrimp. The expression of multiple WSSV immediate early and structural genes was also decreased upon Chi6 silencing. The recombinant Chi6 protein showed no effect on bacterial growth but could attenuate shrimp hemocyte phagocytosis. The mRNA levels of several key elements and downstream genes of the MAPK and Dorsal pathways in Chi6-silenced shrimp were significantly up-regulated, suggesting an inhibitory effect of Chi6 on humoral immune response. Moreover, Chi6 enhanced the regulatory effect of Dorsal on the expression of WSSV ie1 gene. Therefore, Chi6 promotes WSSV infection through immunosuppression and regulation of WSSV gene expression. Targeting Chi6 could be a potential strategy for controlling WSSV disease in shrimp farming.


Chitinases , Penaeidae , Vibrio Infections , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Chitinases/genetics , Recombinant Proteins , Immunosuppressive Agents
13.
IEEE Trans Med Imaging ; 42(4): 1145-1158, 2023 04.
Article En | MEDLINE | ID: mdl-36423311

Computed tomography (CT) is widely used in clinical medicine, and low-dose CT (LDCT) has become popular to reduce potential patient harm during CT acquisition. However, LDCT aggravates the problem of noise and artifacts in CT images, increasing diagnosis difficulty. Through deep learning, denoising CT images by artificial neural network has aroused great interest for medical imaging and has been hugely successful. We propose a framework to achieve excellent LDCT noise reduction using independent operation search cells, inspired by neural architecture search, and introduce the Laplacian to further improve image quality. Employing patch-based training, the proposed method can effectively eliminate CT image noise while retaining the original structures and details, hence significantly improving diagnosis efficiency and promoting LDCT clinical applications.


Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Signal-To-Noise Ratio , Radiation Dosage , Tomography, X-Ray Computed/methods , Artifacts
14.
Front Immunol ; 13: 913955, 2022.
Article En | MEDLINE | ID: mdl-35844582

SH2-domain-containing protein tyrosine phosphatases (PTPs), belonging to the class I PTP superfamily, are responsible for the dephosphorylation on the phosphorylated tyrosine residues in some proteins that are involved in multiple biological processes in eukaryotes. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway transduce signaling responding to interferons and initiate cellular antiviral responses. The activity of the JAK/STAT pathway is generally orchestrated by the de-/phosphorylation of the tyrosine and serine residues of JAKs and STATs, in which the dephosphorylation processes are mainly controlled by PTPs. In the present study, an SH2-domian-contianing PTP, temporally named as LvPTPN6, was identified in Litopenaeus vannamei. LvPTPN6 shares high similarity with PTPN6s from other organisms and was phylogenetically categorized into the clade of arthropods that differs from those of fishes and mammals. LvPTPN6 was constitutively expressed in all detected tissues, located mainly in the cytoplasm, and differentially induced in hemocyte and gill after the challenge of stimulants, indicating its complicated regulatory roles in shrimp immune responses. Intriguingly, the expression of LvPTPN6 was regulated by interferon regulatory factor (IRF), which could directly bind to the LvPTPN6 promoter. Surprisingly, unlike other PTPN6s, LvPTPN6 could promote the dimerization of STAT and facilitate its nuclear localization, which further elevated the expression of STAT-targeting immune effector genes and enhanced the antiviral immunity of shrimp. Therefore, this study suggests a PTPN6-mediated regulatory approach from IRF to the JAK/STAT signaling pathway in shrimp, which provides new insights into the regulatory roles of PTPs in the JAK/STAT signaling pathway and contributes to the further understanding of the mechanisms of antiviral immunity in invertebrates.


Biological Phenomena , Penaeidae , Animals , Antiviral Agents/pharmacology , Interferon Regulatory Factors/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Mammals/metabolism , Protein Tyrosine Phosphatases/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Tyrosine
15.
Front Immunol ; 12: 733730, 2021.
Article En | MEDLINE | ID: mdl-34950131

Toll-like receptors (TLRs) are canonical cell membrane receptors functioning to recognize pathogens and transduce signals to activate immune responses. It has been known that Toll3 in Pacific white shrimp Litopenaeus vannamei (LvToll3) plays a critical role in antiviral immunity by inducing the transcription of interferon regulatory factor (IRF), which mediates a signaling axis that is similar to the interferon system of vertebrates. However, the regulatory mechanism of the Toll3-IRF signaling is still unclear. In this study, a novel microRNA (miRNA) of miR-10 family, temporarily named as miR-10c, was identified from L. vannamei. miR-10c may play a nonnegligible regulatory role in shrimp immune responses since it was constitutively expressed in all detected tissues and transcriptionally induced by immune stimulation. Functional analysis validated that miR-10c could target LvToll3 to inhibit its expression, through which miR-10c blocked the nuclear translocation of IRF and facilitated white spot syndrome virus (WSSV) infection. To our knowledge, the present study revealed the first report of a Toll targeted by miRNA in crustaceans and provided a solid evidence base for supporting the role of LvToll3 in antiviral defense by activating IRF signaling in L. vannamei. Identification of the miR-10c/Toll3/IRF regulatory axis in shrimp provides new insights into the participation of miRNA in the regulation of immune responses and contributes to in-depth understanding of the mechanisms of Toll-induced immune responses in L. vannamei.


Arthropod Proteins/metabolism , Immunity, Innate/genetics , MicroRNAs/metabolism , Penaeidae/immunology , Penaeidae/virology , Signal Transduction/immunology , Toll-Like Receptors/metabolism , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Gene Expression Regulation , Interferon Regulatory Factors/metabolism , Interferons/metabolism , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics
16.
Sci Total Environ ; 800: 149636, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34426312

Mining activities frequently result in severe contamination of river water. This study aimed to better understand the spatial distribution characteristics of Tl and other metals (e.g., Al, Cd, Co, Mn, Ni, Zn, Pb, V, As, Mo, and Sb), and to assess their risks to human health. Surface water samples were collected from the upper Beijiang River (South China) via grab sampling and the diffusive gradients in thin-films (DGT) technique. The concentrations of Tl measured by grab sampling and δ-MnO2-DGT ranged from 0.045 µg L-1 to 0.231 µg L-1 and from 0.056 µg L-1 to 0.131 µg L-1, respectively. Most of the metals monitored were below the threshold levels allowed by the drinking water standard in China, except for As, Sb, and Mn at specific sampling sites. The concentrations of other metals measured by grab sampling were higher than those measured using the DGT technique because of the differences in speciation during these measurements. The hazard quotient (5.43 × 10-4-8.0 × 10-1 for grab sampling and 2.23 × 10-4-2.8 × 10-1 for DGT technique) for the monitored trace metals demonstrated minimal health risk to human beings. The pollution status of these toxic metals in the study area was generally acceptable. As was found to be potentially the most harmful metal in the studied area, with hazard quotients at some sampling sites calculated by grab sampling of >1. It has previously been suggested that As is the most important non-carcinogenic contaminant. The combination of grab sampling and the DGT technique provides a comprehensive understanding of trace metals, especially Tl, in terms of potential bioavailability and ecological assessment.


Rivers , Water Pollutants, Chemical , China , Environmental Monitoring , Humans , Manganese Compounds , Oxides , Thallium , Water Pollutants, Chemical/analysis
17.
J Virol ; 95(16): e0002021, 2021 07 26.
Article En | MEDLINE | ID: mdl-34076481

The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews (Tupaia belangeri chinensis), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectible to X4-tropic HIV-1IIIB, suggesting that tree shrew CXCR4 is a functional HIV-1 coreceptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10- to 1,000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif) but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional coreceptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.


APOBEC Deaminases/metabolism , CD4 Antigens/metabolism , HIV-1/physiology , Receptors, CCR5/metabolism , Tupaia/virology , Virus Replication , APOBEC Deaminases/genetics , Animals , Cells, Cultured , HIV-1/genetics , Humans , Membrane Glycoproteins/genetics , Models, Animal , Receptors, CXCR4/metabolism , Recombinant Proteins/genetics , Viral Envelope Proteins/genetics , Virus Integration
18.
J Immunol ; 204(11): 2918-2930, 2020 06 01.
Article En | MEDLINE | ID: mdl-32303554

The JAK-STAT and NF-κB pathways are conserved cellular signaling cascades orchestrating a variety of biological processes. The regulatory interactions between these two pathways have been well studied in vertebrates but less concerned in invertebrates, hindering further understanding of immune signaling evolution. The Pacific white shrimp Litopenaeus vannamei is now an important model for studying invertebrate immunity and cellular signaling mechanisms. In this study, the microRNA-1 (miR-1) molecule from L. vannamei was identified, and its mature and precursor sequences were analyzed. The miR-1 promoter contained a STAT binding site and its transcriptional activity could be regulated by the JAK-STAT pathway. The target gene of miR-1 was identified as MyD88, the upstream component of the Dorsal (the NF-κB homolog) pathway. By suppressing the expression of MyD88, miR-1 attenuated activation of the Dorsal pathway. With miR-1 as the mediator, STAT also exerted a negative regulatory effect on the Dorsal pathway. Moreover, miR-1 was involved in regulation of the expression of a set of immune effector genes and the phagocytic activity of hemocytes and had an inhibitory or excitatory effect on antibacterial or antiviral responses, respectively. Taken together, the current study revealed a microRNA-mediated inhibition of the NF-κB pathway by the JAK-STAT pathway in an invertebrate, which could contribute to immune homeostasis and shaping immune responses.


Arthropod Proteins/metabolism , Hemocytes/physiology , MicroRNAs/genetics , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Penaeidae/physiology , Animals , Arthropod Proteins/genetics , Immunity/genetics , Immunity, Innate , Janus Kinases/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , Phagocytosis , Promoter Regions, Genetic/genetics , STAT Transcription Factors/metabolism , Signal Transduction
20.
Hepatology ; 71(2): 463-476, 2020 02.
Article En | MEDLINE | ID: mdl-31278760

Nucleos(t)ide analogues (NAs) have been widely used for the treatment of chronic hepatitis B (CHB). Because viral DNA polymerase lacks proofreading function (3' exonuclease activity), theoretically, the incorporated NAs would irreversibly terminate viral DNA synthesis. This study explored the natures of nascent hepatitis B virus (HBV) DNA and infectivity of progeny virions produced under NA treatment. HBV infectivity was determined by infection of HepG2-NTCP cells and primary human hepatocytes (PHHs). Biochemical properties of HBV DNA in the progeny virions were investigated by qPCR, northern blotting, or Southern blotting hybridization, sucrose gradient centrifugation, and in vitro endogenous DNA polymerase assay. Progeny HBV virions produced under NA treatment were mainly not infectious to HepG2-NTCP cells or PHHs. Biochemical analysis revealed that under NA treatment, HBV DNA in nucleaocapsids or virions were predominantly short minus-strand DNA with irreversible termination. This finding was supported by the observation of first disappearance of relaxed circular DNA and then the proportional decline of HBV-DNA levels corresponding to the regions of PreC/C, S, and X genes in serial sera of patients receiving NA treatment. Conclusion: HBV virions produced under NA treatment are predominantly replication deficient because the viral genomes are truncated and elongation of DNA chains is irreversibly terminated. Clinically, our results suggest that the viral loads of CHB patients under NA therapy vary with the different regions of genome being detected by qPCR assays. Our findings also imply that NA prevention of perinatal and sexual HBV transmission as well as infection of transplanted livers works not only by reducing viral loads, but also by producing noninfectious virions.


DNA, Viral/physiology , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/virology , Nucleosides/therapeutic use , Virion/genetics , Virion/pathogenicity , Hepatitis B virus/ultrastructure , Hepatitis B, Chronic/drug therapy , Humans
...