Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3009, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321110

ABSTRACT

Currently, the classification of bone mineral density (BMD) in many research studies remains rather broad, often neglecting localized changes in BMD. This study aims to explore the correlation between peri-implant BMD and primary implant stability using a new artificial intelligence (AI)-based BMD grading system. 49 patients who received dental implant treatment at the Affiliated Hospital of Stomatology of Fujian Medical University were included. Recorded the implant stability quotient (ISQ) after implantation and the insertion torque value (ITV). A new AI-based BMD grading system was used to obtain the distribution of BMD in implant site, and the bone mineral density coefficients (BMDC) of the coronal, middle, apical, and total of the 1 mm site outside the implant were calculated by model overlap and image overlap technology. Our objective was to investigate the relationship between primary implant stability and BMDC values obtained from the new AI-based BMD grading system. There was a significant positive correlation between BMDC and ISQ value in the coronal, middle, and total of the implant (P < 0.05). However, there was no significant correlation between BMDC and ISQ values in the apical (P > 0.05). Furthermore, BMDC was notably higher at implant sites with greater ITV (P < 0.05). BMDC calculated from the new AI-based BMD grading system could more accurately present the BMD distribution in the intended implant site, thereby providing a dependable benchmark for predicting primary implant stability.


Subject(s)
Bone Density , Dental Implants , Humans , Artificial Intelligence , Prostheses and Implants , Torque , Benchmarking
2.
Sci Rep ; 12(1): 12841, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896558

ABSTRACT

To develop and verify an automatic classification method using artificial intelligence deep learning to determine the bone mineral density level of the implant site in oral implant surgery from radiographic data obtained from cone beam computed tomography (CBCT) images. Seventy patients with mandibular dentition defects were scanned using CBCT. These Digital Imaging and Communications in Medicine data were cut into 605 training sets, and then the data were processed with data standardization, and the Hounsfiled Unit (HU) value level was determined as follows: Type 1, 1000-2000; type 2, 700-1000; type 3, 400-700; type 4, 100-400; and type 5, - 200-100. Four trained dental implant physicians manually identified and classified the area of the jaw bone density level in the image using the software LabelMe. Then, with the assistance of the HU value generated by LabelMe, a physician with 20 years of clinical experience confirmed the labeling level. Finally, the HU mean values of various categories marked by dental implant physicians were compared to the mean values detected by the artificial intelligence model to assess the accuracy of artificial intelligence classification. After the model was trained on 605 training sets, the statistical results of the HU mean values of various categories in the dataset detected by the model were almost the same as the HU grading interval on the data annotation. This new classification provides a more detailed solution to guide surgeons to adjust the drilling rate and tool selection during preoperative decision-making and intraoperative hole preparation for oral implant surgery.


Subject(s)
Deep Learning , Dental Implants , Artificial Intelligence , Bone Density , Cone-Beam Computed Tomography/methods , Humans , Mandible/diagnostic imaging , Mandible/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...