Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Pharmacol ; 180: 114190, 2020 10.
Article in English | MEDLINE | ID: mdl-32768401

ABSTRACT

The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.


Subject(s)
Angiotensin I/pharmacology , Antihypertensive Agents/pharmacology , Cell Dedifferentiation/drug effects , Muscle, Smooth, Vascular/drug effects , Nerve Tissue Proteins/antagonists & inhibitors , Vascular Remodeling/drug effects , Angiotensin I/therapeutic use , Animals , Antihypertensive Agents/therapeutic use , Cell Dedifferentiation/physiology , Cell Line , Hypertension/drug therapy , Hypertension/metabolism , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Nerve Tissue Proteins/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Vascular Remodeling/physiology
2.
Exp Physiol ; 99(9): 1229-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24996410

ABSTRACT

Methyl CpG binding protein-2 (MECP2) is a chromatin-remodelling factor with a dual role in gene expression. Evidence from patients carrying MECP2 mutations and from transgenic mouse models demonstrates that this protein is involved in the control of body weight. However, the mechanism for this has not been fully elucidated. To address this, we used a previously characterized Mecp2-null mouse model and found that the increase in body weight is associated with an increased amount of adipose tissue and high leptin levels. Appropriate body weight control requires the proper expression of pro-opiomelanocortin (Pomc) and agouti-related peptide (Agrp), two neuropeptides essential for satiety and appetite signals, respectively. Our results show that in the absence of Mecp2, Pomc and Agrp mRNA expression are altered, and the mice are leptin resistant. To determine the mechanism underlying the defective leptin sensing, we evaluated the expression of genes and the post-translational modifications associated with leptin signalling, which are fundamental to Pomc and Agrp transcriptional control and proper leptin response. We found a decrease in the phosphorylation level of Akt and its target protein Foxo1, which indicate an alteration in leptin-induced signal transduction. Our results demonstrate that the absence of Mecp2 disrupted body weight balance by altering post-translational modifications in leptin-signalling components that regulate Pomc and Agrp expression.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Signal Transduction , Weight Gain , Adiposity , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Forkhead Box Protein O1 , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genotype , Male , Methyl-CpG-Binding Protein 2/genetics , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphorylation , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL