Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 23(6): 2129-2136, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36881964

ABSTRACT

Nanostructuring on length scales corresponding to phonon mean free paths provides control over heat flow in semiconductors and makes it possible to engineer their thermal properties. However, the influence of boundaries limits the validity of bulk models, while first-principles calculations are too computationally expensive to model real devices. Here we use extreme ultraviolet beams to study phonon transport dynamics in a 3D nanostructured silicon metalattice with deep nanoscale feature size and observe dramatically reduced thermal conductivity relative to bulk. To explain this behavior, we develop a predictive theory wherein thermal conduction separates into a geometric permeability component and an intrinsic viscous contribution, arising from a new and universal effect of nanoscale confinement on phonon flow. Using experiments and atomistic simulations, we show that our theory applies to a general set of highly confined silicon nanosystems, from metalattices, nanomeshes, porous nanowires, to nanowire networks, of great interest for next-generation energy-efficient devices.

2.
Opt Express ; 30(17): 30331-30346, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242139

ABSTRACT

We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.

3.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36054507

ABSTRACT

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

4.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34580227

ABSTRACT

Understanding nanoscale thermal transport is critical for nano-engineered devices such as quantum sensors, thermoelectrics, and nanoelectronics. However, despite overwhelming experimental evidence for nondiffusive heat dissipation from nanoscale heat sources, the underlying mechanisms are still not understood. In this work, we show that for nanoscale heat source spacings that are below the mean free path of the dominant phonons in a substrate, close packing of the heat sources increases in-plane scattering and enhances cross-plane thermal conduction. This leads to directional channeling of thermal transport-a novel phenomenon. By using advanced atomic-level simulations to accurately access the lattice temperature and the phonon scattering and transport properties, we finally explain the counterintuitive experimental observations of enhanced cooling for close-packed heat sources. This represents a distinct fundamental behavior in materials science with far-reaching implications for electronics and future quantum devices.

5.
Sci Adv ; 7(5)2021 Jan.
Article in English | MEDLINE | ID: mdl-33571123

ABSTRACT

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer. It combines the excellent phase stability of coherent high-harmonic sources, the unique chemical sensitivity of extreme ultraviolet reflectometry, and state-of-the-art ptychography imaging algorithms. This tabletop microscope can nondestructively probe surface topography, layer thicknesses, and interface quality, as well as dopant concentrations and profiles. High-fidelity imaging was achieved by implementing variable-angle ptychographic imaging, by using total variation regularization to mitigate noise and artifacts in the reconstructed image, and by using a high-brightness, high-harmonic source with excellent intensity and wavefront stability. We validate our measurements through multiscale, multimodal imaging to show that this technique has unique advantages compared with other techniques based on electron and scanning probe microscopies.

6.
Chaos ; 26(9): 093105, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27781478

ABSTRACT

We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.

SELECTION OF CITATIONS
SEARCH DETAIL