Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 686: 149197, 2023 12 17.
Article in English | MEDLINE | ID: mdl-37924668

ABSTRACT

Various extracellular matrix (ECM) in the lungs regulate tissue development and homeostasis, as well as provide support for cell structures. However, few studies regarding the effects of lung cell differentiation using lung-derived ECM (LM) alone have been reported. The present study investigated the capability of lung-derived matrix sheets (LMSs) to induce lung cell differentiation using mouse embryonic stem (ES) cells. Expressions of lung-related cell markers were significantly upregulated in ES-derived embryoid bodies (EBs) cultured on an LMS for two weeks. Moreover, immunohistochemical analysis of EBs grown on LMSs revealed differentiation of various lung-related cells. These results suggest that an LMS can be used to promote differentiation of stem cells into lung cells.


Subject(s)
Embryoid Bodies , Embryonic Stem Cells , Animals , Mice , Cell Differentiation/physiology , Cells, Cultured , Lung
2.
Heliyon ; 9(8): e18983, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600421

ABSTRACT

Manipulating viral genomes is an essential technique in reverse genetics and recombinant vaccine development. A strategy for manipulating large viral genomes involves introducing their entire genome into bacterial artificial chromosomes and employing Escherichia coli genetic tools. For sequence manipulation on bacterial artificial chromosomes (bacterial artificial chromosomes recombineering), a well-established method that relies on the Escherichia coli strain GS1783, and the template plasmid, pEPKan-S, is often used. This method, known as markerless DNA manipulation, allows for the generation of a recombinant bacterial artificial chromosome that does not retain the selection markers used during recombination. Although this method is highly innovative, there remains room for improvement as the plasmid is currently only available for positive selection. Additionally, differentiating true recombinants from false negatives often proves time-consuming. Consequently, an improved method for bacterial artificial chromosomes recombineering, which utilizes fluorescent proteins, has been developed. This method's core comprises three plasmids containing the I-SceI recognition site, antibiotic resistance genes (ampicillin, kanamycin, and zeocin), and fluorescent genes (YPet, mOrange, and mScarlet). The success or failure of Red recombination can be confirmed via fluorescent signals. To validate this method, the Lassa virus genes were introduced into the bacterial artificial chromosomes, containing the entire genome of the vaccinia virus strain LC16m8. Consequently, the expression of fluorescent protein genes contributed to positive selection, such as blue-white screening and counter-selection during the first and second Red recombination.

3.
Front Microbiol ; 14: 1137086, 2023.
Article in English | MEDLINE | ID: mdl-36910229

ABSTRACT

RNA viruses are the etiological agents of many infectious diseases. Since RNA viruses are error-prone during genome replication, rapid, accurate and economical whole RNA viral genome sequence determination is highly demanded. Next-generation sequencing (NGS) techniques perform whole viral genome sequencing due to their high-throughput sequencing capacity. However, the NGS techniques involve a significant burden for sample preparation. Since to generate complete viral genome coverage, genomic nucleic acid enrichment is required by reverse transcription PCR using virus-specific primers or by viral particle concentration. Furthermore, conventional NGS techniques cannot determine the 5' and 3' terminal sequences of the RNA viral genome. Therefore, the terminal sequences are determined one by one using rapid amplification of cDNA ends (RACE). However, since some RNA viruses have segmented genomes, the burden of the determination using RACE is proportional to the number of segments. To date, there is only one study attempting whole genome sequencing of multiple RNA viruses without using above mentioned methods, but the generated sequences' accuracy compared to the reference sequences was up to 97% and did not reach 100% due to the low read depth. Hence, we established novel methods, named PCR-NGS and RCA-NGS, that were optimized for an NGS machine, MinION. These methods do not require nucleic acid amplification with virus-specific PCR primers, physical viral particle enrichment, and RACE. These methods enable whole RNA viral genome sequencing by combining the following techniques: (1) removal of unwanted DNA and RNA other than the RNA viral genome by nuclease treatment; (2) the terminal of viral genome sequence determination by barcoded linkers ligation; (3) amplification of the viral genomic cDNA using ligated linker sequences-specific PCR or an isothermal DNA amplification technique, such as rolling circle amplification (RCA). The established method was evaluated using isolated RNA viruses with single-stranded, double-stranded, positive-stranded, negative-stranded, non-segmented or multi-segmented genomes. As a result, all the viral genome sequences could be determined with 100% accuracy, and these mean read depths were greater than 2,500×, at least using either of the methods. This method should allow for easy and economical determination of accurate RNA viral genomes.

4.
J Biosci Bioeng ; 135(2): 143-150, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36503871

ABSTRACT

Vestibular hair cells (V-HCs) residing in the inner ear have important roles related to balance. Although differentiation of pluripotent stem cells into HCs has been shown, an effective method has yet to be established. We previously reported that use of vestibular cell-derived conditioned medium (V-CM) was helpful to induce embryonic stem (ES) cells to differentiate into V-HC-like cells in two-dimensional (2D) cultures of ES-derived embryoid bodies (EBs). In the present report, V-CM was used with three-dimensional (3D) cultures of EBs, which resulted in augmented expression of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5), but not of the cochlear HC-related marker Lmod3. Gene expression analyses of both 2D and 3D EBs cultured for two weeks revealed a greater level of augmented induction of HC-related markers in the 3D-cultured EBs. These results indicate that a 3D culture in combination with use of V-CM is an effective method for producing V-HCs.


Subject(s)
Hair Cells, Vestibular , Hair Cells, Auditory, Inner/metabolism , Cell Differentiation/genetics , Embryonic Stem Cells , Organoids , Cells, Cultured
5.
Acta Trop ; 235: 106636, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944582

ABSTRACT

Schistosomiasis is one of the most prevalent waterborne parasitic diseases affecting humans. In natural conditions, snails are necessary for maintenance of its lifecycle and also required as intermediate hosts to maintain the lifecycle in laboratory settings. In the present study, the location of S. mansoni larvae in Biomphalaria glabrata snails after infection (inoculation of miracidia) was investigated. Larvae were found located in the head-foot (HF) area of B. glabrata snails at 10 days post-infection (DPI), then their location was predominantly changed to the hepatopancreas and ovotestis (HPOT) area by 56 DPI. Next, the effects of extracts from various organs of B. glabrata snails including HF and HPOT for in vitro culturing of S. mansoni larvae were investigated. The HF extract enabled prolonged culturing of S. mansoni larvae. Furthermore, sequential use of that followed by the HPOT extract supported larval development or reproduction of daughter sporocysts. These results may provide important information for identifying essential factors and molecules for culturing Schistosoma larvae in vitro.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Animals , Biomphalaria/parasitology , Host-Parasite Interactions , Humans , Larva , Life Cycle Stages , Reproduction , Schistosoma mansoni
6.
Sci Rep ; 12(1): 11011, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773408

ABSTRACT

Hair follicle epithelial stem cells (HFSCs), which exist in the bulge region, have important functions for homeostasis of skin as well as hair follicle morphogenesis. Although several methods for isolation of HFSCs using a variety of stem cell markers have been reported, few investigations regarding culture methods or techniques to yield long-term maintenance of HFSCs in vitro have been conducted. In the present study, we screened different types of commercially available culture medium for culturing HFSCs. Among those tested, one type was shown capable of supporting the expression of stem cell markers in cultured HFSCs. However, both the differentiation potential and in vivo hair follicle-inducing ability of HFSCs serially passaged using that optimal medium were found to be impaired, probably because of altered responsiveness to Wnt signaling. The changes noted in HFSCs subjected to a long-term culture suggested that the Wnt signaling-related environment must be finely controlled for maintenance of the cells.


Subject(s)
Hair Follicle , Stem Cells , Animals , Antigens, CD34/metabolism , Cell Differentiation , Cells, Cultured , Hair Follicle/metabolism , Mice
7.
Biochem Biophys Rep ; 19: 100649, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31193276

ABSTRACT

Vestibular hair cells (V-HCs) in the inner ear have important roles and various functions. When V-HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V-HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V-HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V-HCs.

8.
Immunol Res ; 66(6): 800-805, 2018 12.
Article in English | MEDLINE | ID: mdl-30694514

ABSTRACT

The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all the REG family genes in IBD is still unclear. Here, we analyzed expression of all the REG family genes (REGIα, REGIß, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iß, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iß, and REG IV genes in LS-174T and HT-29 human colonic epithelial cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iß was induced by IL-22. Deletion analyses revealed that three regions (- 220~- 211, - 179~- 156, and - 146~- 130) in REG Iα and the region (- 274~- 260) in REG Iß promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iß, respectively. The introduction of siRNA for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iß. The gene activation mechanisms of REG Iα/REG Iß may play a role in colon mucosal regeneration in IBD.


Subject(s)
Inflammatory Bowel Diseases/genetics , Transcription Factors/genetics , Cell Line, Tumor , Colon/metabolism , Epithelial Cells/metabolism , HT29 Cells , Humans , Intestinal Mucosa/metabolism , Promoter Regions, Genetic/genetics
9.
Biochem Biophys Rep ; 12: 198-205, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29090282

ABSTRACT

The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iß, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iß, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iß, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iß was induced by IL-22. Deletion analyses revealed that three regions (- 220 to - 211, - 179 to - 156, and - 146 to - 130) in REG Iα and the region (- 274 to- 260) in REG Iß promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iß, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iß. The gene activation mechanisms of REG Iα/REG Iß may play a role in colon mucosal regeneration in IBD.

10.
Biochem Biophys Res Commun ; 463(4): 618-23, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26056007

ABSTRACT

In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-ß-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Melanoma, Experimental/pathology , Wnt Proteins/physiology , Animals , Cell Line, Tumor , Cellular Senescence/physiology , Culture Media, Conditioned , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL