Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
J Biomed Sci ; 31(1): 86, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232783

ABSTRACT

BACKGROUND: While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there has been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity. METHODS: Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF = 8) or dengue haemorrhagic fever (DHF = 8). IL-1ß levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF. RESULTS: Significantly higher levels of IL-1ß were seen in culture supernatants when NS1 was co-cultured with LDL (p = 0.01, median = 45.69 pg/ml), but lower levels when NS1 was co-cultured with HDL (p = 0.05, median = 4.617 pg/ml). MDMs of those with past DHF produced higher levels of IL-1ß when NS1 was co-cultured with PAF (p = 0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF. CONCLUSIONS: As RPLP2 is important in DENV replication, regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.


Subject(s)
Dengue Virus , Dengue , Macrophages , Viral Nonstructural Proteins , Humans , Viral Nonstructural Proteins/metabolism , Dengue/virology , Dengue/immunology , Macrophages/metabolism , Male , Adult , Female , Interleukin-1beta/metabolism , Lipids
2.
Res Sq ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39257995

ABSTRACT

Background: As many studies have shown conflicting results regarding the extent of viraemia and clinical disease severity, we sought to investigate if viraemia during early dengue illness is associated with subsequent clinical disease severity. Methods: Realtime PCR was carried out to identify the dengue virus (DENV serotype), in 362 patients, presenting within the first 4 days of illness, from 2017 to 2022, in Colombo Sri Lanka. To characterize subsequent clinical disease severity, all patients were followed throughout their illness daily and disease severity classified according to WHO 1997 and 2009 disease classification. Results: 263 patients had DF, 99 progressed to develop DHF, and 15/99 with DHF developed shock (DSS). Although the viral loads were higher in the febrile phase in patients who progressed to develop DHF than in patients with DF this was not significant (p=0.5). Significant differences were observed in viral loads in patients infected with different DENV serotypes (p=0.0009), with lowest viral loads detected in DENV2 and the highest viral loads in DENV3. Sub-analysis for association of viraemia with disease severity for each DENV serotyped was again not significant. Although those infected with DENV2 had lower viral loads, infection with DENV2 was significantly associated with a higher risk of developing DHF (p=0.011, Odds ratio 1.9; 95% CI 1.164 to 3.078). Based on the WHO 2009 disease classification, 233 had dengue with warning signs (DWW), 114 dengue without warning signs (DWoWS), and 15 had severe dengue (SD). No significant difference was observed in the viral loads between those with SD, DWW and DWoWS (p=0.27). Conclusions: Viral loads were significantly different in the febrile phase between different DENV serotypes, and do not appear to significantly associate with subsequent clinical disease severity in a large Sri Lankan cohort.

3.
medRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39228713

ABSTRACT

Background: Influenza A has been named as a priority pathogen by the WHO due to the potential to cause pandemics. Genomic sequencing of influenza strains is important to understand the evolution of the influenza strains and also to select the appropriate influenza vaccines to be used in the different influenza seasons in Sri Lanka. Therefore, we sought to understand the molecular epidemiology of the influenza viruses in the Western Province of Sri Lanka, including mutational analysis to investigate the evolutionary dynamics. Methodology: A total of 349 individuals presenting with fever and respiratory symptoms were enrolled in this study from November 2022 to May 2024. Nasopharyngeal and oropharyngeal specimens were collected and screened using quantitative PCR to detect Influenza A, Influenza B, and SARS-CoV-2. Subtyping and genomic sequencing was carried out on influenza A strains using Oxford Nanopore Technology. Results: Influenza A was detected in 49 (14 %) patients, influenza B in 20 (5.7%) and SARS-CoV-2 in 41 (11.7%). Co-infections were observed in five participants. The phylogenetic analysis assigned the H1N1 HA gene sequences within the 6B.1A.5a.2a clade. The HA gene of the H1N1 sequences in 2023 were assigned as belonging to the subclades C.1, C.1.2, and C.1.8, while the 2024 sequences were assigned to subclades C.1.8 and C.1.9. The H3N2 sequences from 2023 were assigned to the 3C.2a1b.2a.2a.1b clade and subclade G.1.1.2, while the 2024 sequences were assigned to the 3C.2a1b.2a.2a.3a.1 clade and subclade J.2. The K54Q, A186T, Q189E, E224A, R259K, K308R, I418V, and X215A amino acid substitutions were seen in the H1N1 in the 2023 and 2024 sequences. The 2024 H1N1 sequences additionally exhibited further substitutions, such as V47I, I96T, T120A, A139D, G339X, K156X, and T278S. Conclusion: In this first study using genomic sequencing to characterize the influenza A strains in Sri Lanka, which showed different influenza A viruses circulating in an 18-month period. As the Sri Lankan strains also had certain mutations of unknown significance, it would be important to continue detailed surveillance of the influenza strains in Sri Lanka to choose the most suitable vaccines for the population and the timing of vaccine administration.

4.
Curr Opin Infect Dis ; 37(5): 349-356, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39079180

ABSTRACT

PURPOSE OF REVIEW: With the marked rise in dengue globally, developing well tolerated and effective vaccines and therapeutics is becoming more important. Here we discuss the recent developments in the understanding of immune mechanisms that lead to severe dengue and the learnings from the past, that can help us to find therapeutic targets, prognostic markers, and vaccines to prevent development of severe disease. RECENT FINDINGS: The extent and duration of viraemia often appears to be associated with clinical disease severity but with some variability. However, there also appear to be significant differences in the kinetics of viraemia and nonstructural protein 1 (NS1) antigenemia and pathogenicity between different serotypes and genotypes of the DENV. These differences may have significant implications for development of treatments and in inducing robust immunity through dengue vaccines. Although generally higher levels of neutralizing antibodies are thought to protect against infection and severe disease, there have been exceptions and the specificity, breadth and functionality of the antibody responses are likely to be important. SUMMARY: Although there have been many advances in our understanding of dengue pathogenesis, viral and host factors associated with occurrence of severe dengue, vascular leak and the immune correlates of protection remain poorly understood.


Subject(s)
Dengue Vaccines , Dengue Virus , Severe Dengue , Humans , Dengue Virus/immunology , Dengue Virus/pathogenicity , Severe Dengue/immunology , Severe Dengue/virology , Dengue Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Viremia/immunology , Dengue/immunology
6.
Br J Dermatol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044673

ABSTRACT

BACKGROUND: The main conventional systemic atopic dermatitis (AD) treatments are methotrexate (MTX) and ciclosporin (CyA). Dupilumab was the first novel systemic agent to enter routine clinical practice. There are no head-to-head randomised controlled trials or real-world studies comparing these agents directly. Network meta-analyses provide indirect comparative efficacy and safety data and have shown strong evidence for dupilumab and CyA. OBJECTIVES: The aim of this study was to compare the real-world clinical effectiveness and safety of CyA, dupilumab and MTX in AD. METHODS: We compared the effectiveness and safety of these systemic agents in a prospective observational cohort study of adult and paediatric patients recruited into the UK-Irish Atopic eczema Systemic TherApy Register (A-STAR). Treatment effectiveness measures included Eczema Area and Severity Index (EASI), Patient-Oriented Eczema Measure (POEM), Peak Pruritus Numerical Rating Scale (PP-NRS), Dermatology Life Quality Index (DLQI) and children's DLQI (cDLQI). Minimum duration of treatment was 28 days and follow-up was 12 months. Adjusted Cox-regression was used to compare the hazards of achieving EASI-50, EASI-75 and EASI-90 over time, and linear mixed-effects models were used to estimate changes in efficacy scores. Treatment safety was assessed by examining adverse events (AEs) at follow-up visits. RESULTS: 488 patients (n=311 adults and n=177 children/adolescents) on dupilumab (n=282), methotrexate (n=149), or CyA (n=57) were included. CyA and MTX were primarily used first line, while dupilumab was mainly a second line systemic as per UK National Institute of Clinical and Care Excellence (NICE) recommendations. EASI-50, EASI-75 and EASI-90 were achieved more rapidly in the dupilumab and CyA groups compared to MTX. After adjustment for previous severity, the reduction in EASI, POEM, PP-NRS and DLQI was greater for patients treated with dupilumab compared to MTX. In severe patients the reduction in EASI, POEM, and PP-NRS was even greater with CyA. The incidence of AEs was similar across groups (734, 654 and 594 per 10,000 person-month on CyA, dupilumab and MTX respectively). CONCLUSIONS: This real-world comparison of CyA, dupilumab and MTX in AD suggests that dupilumab is consistently more effective than MTX and that CyA is most effective in very severe disease within one follow-up year.

7.
PLoS Negl Trop Dis ; 18(6): e0012248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935620

ABSTRACT

BACKGROUND: Obesity and diabetes are known risk factors for severe dengue. Therefore, we sought to investigate the association of obesity with increased risk of hospitalization, as there is limited information. METHODS AND FINDINGS: Children aged 10 to 18 years (n = 4782), were recruited from 9 districts in Sri Lanka using a stratified multi-stage cluster sampling method. Details of previous admissions to hospital due to dengue and anthropometric measurements were recorded and seropositivity rates for dengue were assessed. The body mass index (BMI) centile in children aged 10 to 18, was derived by plotting the values on the WHO BMI-for-age growth charts, to acquire the percentile ranking. RESULTS: Although the dengue seropositivity rates were similar in children of the different BMI centiles, 12/66 (18.2%) seropositive children with a BMI centile >97th, had been hospitalized for dengue, compared to 103/1086 (9.48%) of children with a BMI centile of <97th. The logistic regression model suggested that BMI centiles 50th to 85th (OR = 1.06, 95% CI, 1.00 to 1.11, p = 0.048) and BMI centile of >97th (OR 2.33, 95% CI, 1.47 to 3.67, p = 0.0003) was significantly associated with hospitalization when compared to children in other BMI categories. CONCLUSIONS: Obesity appears to be associated with an increased risk of hospitalization in dengue, which should be further investigated in longitudinal prospective studies. With the increase in obesity in many countries, it would be important to create awareness regarding obesity and risk of severe disease and hospitalization in dengue.


Subject(s)
Body Mass Index , Dengue , Hospitalization , Pediatric Obesity , Humans , Child , Adolescent , Hospitalization/statistics & numerical data , Male , Female , Sri Lanka/epidemiology , Pediatric Obesity/epidemiology , Pediatric Obesity/complications , Dengue/epidemiology , Risk Factors
8.
medRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38854029

ABSTRACT

Background: While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there have been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity. Methods: Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF=8) or dengue haemorrhagic fever (DHF=8). IL-1ß levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF. Results: Significantly higher levels of IL-1ß were seen in culture supernatants when NS1 was co-cultured with LDL (p=0.01), but with lower levels with HDL (p=0.05). MDMs of those past DHF produced more IL-1ß when NS1 with PAF (p=0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF. Conclusions: As RPLP2 is important in DENV replication and in regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.

9.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
10.
Trends Mol Med ; 30(5): 484-498, 2024 May.
Article in English | MEDLINE | ID: mdl-38582622

ABSTRACT

Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/virology , Dengue/epidemiology , Dengue/metabolism , Dengue Virus/pathogenicity , Dengue Virus/physiology , Animals , Biomarkers , Dengue Vaccines , Host-Pathogen Interactions
11.
Nat Methods ; 21(5): 766-776, 2024 May.
Article in English | MEDLINE | ID: mdl-38654083

ABSTRACT

T cells are essential immune cells responsible for identifying and eliminating pathogens. Through interactions between their T-cell antigen receptors (TCRs) and antigens presented by major histocompatibility complex molecules (MHCs) or MHC-like molecules, T cells discriminate foreign and self peptides. Determining the fundamental principles that govern these interactions has important implications in numerous medical contexts. However, reconstructing a map between T cells and their antagonist antigens remains an open challenge for the field of immunology, and success of in silico reconstructions of this relationship has remained incremental. In this Perspective, we discuss the role that new state-of-the-art deep-learning models for predicting protein structure may play in resolving some of the unanswered questions the field faces linking TCR and peptide-MHC properties to T-cell specificity. We provide a comprehensive overview of structural databases and the evolution of predictive models, and highlight the breakthrough AlphaFold provided the field.


Subject(s)
Adaptive Immunity , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/chemistry , Immunity, Cellular , Protein Conformation , T-Lymphocytes/immunology , Deep Learning , Models, Molecular , Animals
12.
Front Immunol ; 15: 1369238, 2024.
Article in English | MEDLINE | ID: mdl-38585273

ABSTRACT

Introduction: Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods: Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results: Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion: We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.


Subject(s)
Dermatitis, Atopic , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Filaggrin Proteins , Inflammation , Intermediate Filament Proteins/genetics , Keratinocytes , Lipids , Peptides/metabolism , Proteomics , T-Lymphocytes/metabolism
13.
Clin Exp Dermatol ; 49(5): 450-458, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38173286

ABSTRACT

The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.


Subject(s)
Antigens, CD1 , Skin Diseases , T-Lymphocytes , Humans , Antigens, CD1/metabolism , Antigens, CD1/immunology , Dermatitis, Allergic Contact/immunology , Dermatitis, Atopic/immunology , Langerhans Cells/immunology , Psoriasis/immunology , Skin/immunology , Skin/pathology , T-Lymphocytes/immunology , Skin Diseases/drug therapy , Skin Diseases/metabolism , Skin Diseases/pathology
14.
Clin Exp Immunol ; 215(3): 268-278, 2024 02 19.
Article in English | MEDLINE | ID: mdl-37313783

ABSTRACT

As there are limited data on B-cell epitopes for the nucleocapsid protein in SARS-CoV-2, we sought to identify the immunodominant regions within the N protein, recognized by patients with varying severity of natural infection with the Wuhan strain (WT), delta, omicron, and in those who received the Sinopharm vaccines, which is an inactivated, whole virus vaccine. Using overlapping peptides representing the N protein, with an in-house ELISA, we mapped the immunodominant regions within the N protein, in seronegative (n = 30), WT infected (n = 30), delta infected (n = 30), omicron infected + vaccinated (n = 20) and Sinopharm (BBIBP-CorV) vaccinees (n = 30). We then investigated the sensitivity and specificity of these immunodominant regions and analyzed their conservation with other SARS-CoV-2 variants of concern, seasonal human coronaviruses, and bat Sarbecoviruses. We identified four immunodominant regions aa 29-52, aa 155-178, aa 274-297, and aa 365-388, which were highly conserved within SARS-CoV-2 and the bat coronaviruses. The magnitude of responses to these regions varied based on the infecting SARS-CoV-2 variants, >80% of individuals gave responses above the positive cut-off threshold to many of the four regions, with some differences with individuals who were infected with different VoCs. These regions were found to be 100% specific, as none of the seronegative individuals gave any responses. As these regions were highly specific with high sensitivity, they have a potential to be used to develop diagnostic assays and to be used in development of vaccines.


Subject(s)
COVID-19 , Chiroptera , Humans , Animals , SARS-CoV-2 , Antibody Formation , Immunodominant Epitopes , Nucleocapsid , Antibodies, Viral
15.
PLOS Glob Public Health ; 3(12): e0002598, 2023.
Article in English | MEDLINE | ID: mdl-38100392

ABSTRACT

Dengue is the most rapidly emerging mosquito-borne infection and, due to climate change and unplanned urbanization, it is predicted that the global burden of dengue will rise further as the infection spreads to new geographical locations. Dengue-endemic countries are often unable to cope with such increases, with health care facilities becoming overwhelmed during each dengue season. Furthermore, although dengue has been predominantly a childhood illness in the past, it currently mostly affects adults in many countries, with higher incidence of severe disease and mortality rates in pregnant women and in those with comorbidities. As there is currently no specific treatment for dengue and no early biomarker to identify those who will progress to develop vascular leakage, all individuals with dengue are closely monitored in case they need fluid management. Furthermore, diagnosing patients with acute dengue is challenging due to the similarity of clinical symptoms during early illness and poor sensitivity and specificity of point-of-care diagnostic tests. Novel vector control methods, such as the release of Wolbachia-infected mosquitoes, have shown promising results by reducing vector density and dengue incidence in clinical trial settings. A new dengue vaccine, TAK-003, had an efficacy of 61.2% against virologically confirmed dengue, 84.1% efficacy against hospitalizations and a 70% efficacy against development of dengue haemorrhagic fever (DHF) at 54 months. While vaccines and mosquito control methods are welcome, they alone are unlikely to fully reduce the burden of dengue, and a treatment for dengue is therefore essential. Several novel antiviral drugs are currently being evaluated along with drugs that inhibit host mediators, such as mast cell products. Although viral proteins such as NS1 contribute to the vascular leak observed in severe dengue, the host immune response to the viral infection also plays a significant role in progression to severe disease. There is an urgent need to discover safe and effective treatments for dengue to prevent disease progression.

16.
Nat Commun ; 14(1): 7216, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940670

ABSTRACT

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


Subject(s)
COVID-19 , Neutrophils , Humans , CD8-Positive T-Lymphocytes , Lung , T-Lymphocytes, Cytotoxic
17.
PLoS Negl Trop Dis ; 17(9): e0011613, 2023 09.
Article in English | MEDLINE | ID: mdl-37676889

ABSTRACT

Adipokines have not been studied in acute dengue, despite their emerging role in inducing and regulating inflammation. Therefore, we sought to identify adipokine levels in patients with varying severities of acute dengue to understand their role in disease pathogenesis. We determined the levels of leptin, resistin, omentin, adiponectin, as well as IFNß, and NS1 using quantitative ELISA in patients with dengue fever (DF = 49) and dengue haemorrhagic fever (DHF = 22) at admission (febrile phase) and at the time of discharge (recovery phase). The viral loads and serotypes of all samples were quantified using quantitative real-time RT-PCR. Resistin levels (p = 0.04) and omentin (p = 0.006) levels were significantly higher in patients who developed DHF. Omentin levels in the febrile phase also correlated with the AST (Spearman's r = 0.38, p = 0.001) and ALT levels (Spearman's r = 0.24, p = 0.04); as well as serum leptin levels with both AST (Spearman's r = 0.27, p = 0.02) and ALT (Spearman's r = 0.28, p = 0.02). Serum adiponectin levels in the febrile phase did not correlate with any of the other adipokines or with liver enzymes, but inversely correlated with CRP levels (Spearman's r = -0.31, p = 0.008). Although not significant (p = 0.14) serum IFNß levels were lower in the febrile phase in those who progressed to develop DHF (median 0, IQR 0 to 39.4 pg/ml), compared to those who had DF (median 37.1, IQR 0 to 65.6 pg.ml). The data suggest that adipokines are likely to play a role in the pathogenesis of dengue, which should be further explored for the potential to be used as prognostic markers and as therapeutic targets.


Subject(s)
Adipokines , Dengue , Humans , Leptin , Resistin , Adiponectin , Patient Acuity , Fever
18.
Cell ; 186(21): 4583-4596.e13, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37725977

ABSTRACT

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.


Subject(s)
Antigens, CD1 , Lipids , Humans , Antigen Presentation , Antigens, CD1/chemistry , Antigens, CD1/metabolism , Lipidomics , Lipids/chemistry , T-Lymphocytes , Amino Acid Motifs
19.
Eur J Immunol ; 53(10): e2250333, 2023 10.
Article in English | MEDLINE | ID: mdl-37539748

ABSTRACT

In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αß T cells that respond differently to self, infectious, microbiome, and noxious stimuli.  To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses.  However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a.  The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin.  Here, we review studies showing that skin-derived αß T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.


Subject(s)
Dermatitis, Contact , Skin Diseases , Humans , T-Lymphocytes , Skin , Lipids , Antigens, CD1/metabolism
20.
J Extracell Vesicles ; 12(6): e12335, 2023 06.
Article in English | MEDLINE | ID: mdl-37338870

ABSTRACT

Filaggrin (FLG) protein is indispensable for multiple aspects of the epidermal barrier function but its accumulation in a monomeric filaggrin form may initiate premature keratinocytes death; it is unclear how filaggrin levels are controlled before the formation of storing keratohyalin granules. Here we show that keratinocyte-secreted small extracellular vesicles (sEVs) may contain filaggrin-related cargo providing a route of eliminating excess filaggrin from keratinocytes; blocking of sEV release has cytotoxic effects on those cells. Filaggrin-containing sEVs are found in plasma in both healthy individuals and atopic dermatitis patients. Staphylococcus aureus (S. aureus) enhances packaging and secretion of filaggrin-relevant products within the sEVs for enhanced export via a TLR2-mediated mechanism which is also linked to the ubiquitination process. This filaggrin removal system, preventing premature keratinocyte death and epidermal barrier dysfunction, is exploited by S. aureus which promotes filaggrin elimination from the skin that could help safeguard bacterial growth.


Subject(s)
Extracellular Vesicles , Staphylococcal Infections , Humans , Staphylococcus aureus , Toll-Like Receptor 2/metabolism , Filaggrin Proteins , Mortality, Premature , Extracellular Vesicles/metabolism , Keratinocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL