Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 29(12): 1694-1708.e10, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36493759

ABSTRACT

Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Allosteric Regulation , NAD/metabolism , Antineoplastic Agents/pharmacology , Binding Sites
2.
Nat Commun ; 12(1): 4835, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376679

ABSTRACT

F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Calcium/pharmacology , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Cell Line, Tumor , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Mitochondria/drug effects , Mitochondrial Proton-Translocating ATPases/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Proton Ionophores/pharmacology
3.
J Am Chem Soc ; 143(18): 6787-6791, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33914500

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a multifunctional molecule. Beyond redox metabolism, NAD+ has an equally important function as a substrate for post-translational modification enzymes, the largest family being the poly-ADP-ribose polymerases (PARPs, 17 family members in humans). The recent surprising discoveries of noncanonical NAD (NAD+/NADH)-binding proteins suggests that the NAD interactome is likely larger than previously thought; yet, broadly useful chemical tools for profiling and discovering NAD-binding proteins do not exist. Here, we describe the design, synthesis, and validation of clickable, photoaffinity labeling (PAL) probes, 2- and 6-ad-BAD, for interrogating the NAD interactome. We found that 2-ad-BAD efficiently labels PARPs in a UV-dependent manner. Chemical proteomics experiments with 2- and 6-ad-BAD identified known and unknown NAD+/NADH-binding proteins. Together, our study shows the utility of 2- and 6-ad-BAD as clickable PAL NAD probes.


Subject(s)
Adenine Nucleotides/chemistry , Benzamides/chemistry , Carrier Proteins/chemistry , NAD/chemistry , Proteomics , Humans
4.
Pharmacol Res ; 165: 105421, 2021 03.
Article in English | MEDLINE | ID: mdl-33429034

ABSTRACT

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Subject(s)
Membrane Proteins/deficiency , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Mitochondrial Permeability Transition Pore/metabolism , Muscle Proteins/deficiency , Triazoles/pharmacology , Zebrafish Proteins/deficiency , Animals , Animals, Genetically Modified , Cell Line, Transformed , Dose-Response Relationship, Drug , Humans , Locomotion/drug effects , Locomotion/physiology , Membrane Proteins/genetics , Muscle Proteins/genetics , Rhodamines/pharmacology , Triazoles/chemistry , Zebrafish , Zebrafish Proteins/genetics
5.
Pharmacol Res ; 151: 104548, 2020 01.
Article in English | MEDLINE | ID: mdl-31759087

ABSTRACT

Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.


Subject(s)
Cardiotonic Agents/therapeutic use , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Myocardial Reperfusion Injury/drug therapy , Small Molecule Libraries/therapeutic use , Animals , Cardiotonic Agents/pharmacology , Cell Line , Cells, Cultured , Humans , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Small Molecule Libraries/pharmacology
6.
ChemMedChem ; 14(20): 1771-1782, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31423734

ABSTRACT

Excessive mitochondrial matrix Ca2+ and oxidative stress leads to the opening of a high-conductance channel of the inner mitochondrial membrane referred to as the mitochondrial permeability transition pore (mtPTP). Because mtPTP opening can lead to cell death under diverse pathophysiological conditions, inhibitors of mtPTP are potential therapeutics for various human diseases. High throughput screening efforts led to the identification of a 3-carboxamide-5-phenol-isoxazole compounds as mtPTP inhibitors. While they showed nanomolar potency against mtPTP, they exhibited poor plasma stability, precluding their use in in vivo studies. Herein, we describe a series of structurally related analogues in which the core isoxazole was replaced with a triazole, which resulted in an improvement in plasma stability. These analogues were readily generated using the copper-catalyzed "click chemistry". One analogue, N-(5-chloro-2-methylphenyl)-1-(4-fluoro-3-hydroxyphenyl)-1H-1,2,3-triazole-4-carboxamide (TR001), was efficacious in a zebrafish model of muscular dystrophy that results from mtPTP dysfunction whereas the isoxazole isostere had minimal effect.


Subject(s)
Isoxazoles/pharmacology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Muscular Dystrophies/drug therapy , Phenols/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Stability , HeLa Cells , High-Throughput Screening Assays , Humans , Isoxazoles/blood , Isoxazoles/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Molecular Structure , Muscular Dystrophies/metabolism , Phenols/blood , Phenols/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , Zebrafish
7.
Oxid Med Cell Longev ; 2019: 3403075, 2019.
Article in English | MEDLINE | ID: mdl-31191798

ABSTRACT

Mitochondrial permeability transition pore (PTP), a (patho)physiological phenomenon discovered over 40 years ago, is still not completely understood. PTP activation results in a formation of a nonspecific channel within the inner mitochondrial membrane with an exclusion size of 1.5 kDa. PTP openings can be transient and are thought to serve a physiological role to allow quick Ca2+ release and/or metabolite exchange between mitochondrial matrix and cytosol or long-lasting openings that are associated with pathological conditions. While matrix Ca2+ and oxidative stress are crucial in its activation, the consequence of prolonged PTP opening is dissipation of the inner mitochondrial membrane potential, cessation of ATP synthesis, bioenergetic crisis, and cell death-a primary characteristic of mitochondrial disorders. PTP involvement in mitochondrial and cellular demise in a variety of disease paradigms has been long appreciated, yet the exact molecular entity of the PTP and the development of potent and specific PTP inhibitors remain areas of active investigation. In this review, we will (i) summarize recent advances made in elucidating the molecular nature of the PTP focusing on evidence pointing to mitochondrial FoF1-ATP synthase, (ii) summarize studies aimed at discovering novel PTP inhibitors, and (iii) review data supporting compromised PTP activity in specific mitochondrial diseases.


Subject(s)
Mitochondrial Diseases/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Humans , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore
8.
Biochim Biophys Acta ; 1857(8): 1197-1202, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26924772

ABSTRACT

The mitochondrial permeability transition pore (PTP) is now recognized as playing a key role in a wide variety of human diseases whose common pathology may be based in mitochondrial dysfunction. Recently, PTP assays have been adapted to high-throughput screening approaches to identify small molecules specifically inhibiting the PTP. Following extensive secondary chemistry, the most potent inhibitors of the PTP described to date have been developed. This review will provide an overview of each of these screening efforts, use of resulting compounds in animal models of PTP-based diseases, and problems that will require further study. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Subject(s)
Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membranes/drug effects , Anilides/chemical synthesis , Anilides/pharmacology , Benzamidines/chemical synthesis , Benzamidines/pharmacology , Cyclosporine/chemistry , Cyclosporine/pharmacology , Drug Design , High-Throughput Screening Assays , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore , Oximes/chemistry , Oximes/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Quinolinium Compounds/chemistry , Quinolinium Compounds/pharmacology , Secosteroids/chemistry , Secosteroids/pharmacology , Structure-Activity Relationship
9.
ChemMedChem ; 11(3): 283-8, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26693836

ABSTRACT

Persistent opening of the mitochondrial permeability transition pore (PTP), an inner membrane channel, leads to mitochondrial dysfunction and renders the PTP a therapeutic target for a host of life-threatening diseases. Herein, we report our effort toward identifying small-molecule inhibitors of this target through structure-activity relationship optimization studies, which led to the identification of several potent analogues around the N-phenylbenzamide compound series identified by high-throughput screening. In particular, compound 4 (3-(benzyloxy)-5-chloro-N-(4-(piperidin-1-ylmethyl)phenyl)benzamide) displayed noteworthy inhibitory activity in the mitochondrial swelling assay (EC50 =280 nm), poor-to-very-good physicochemical as well as in vitro pharmacokinetic properties, and conferred very high calcium retention capacity to mitochondria. From the data, we believe compound 4 in this series represents a promising lead for the development of PTP inhibitors of pharmacological relevance.


Subject(s)
Benzamides/pharmacology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Benzamides/chemical synthesis , Benzamides/chemistry , Dose-Response Relationship, Drug , Humans , Mitochondrial Permeability Transition Pore , Molecular Structure , Structure-Activity Relationship
10.
ChemMedChem ; 10(10): 1655-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286375

ABSTRACT

The mitochondrial permeability transition pore (mtPTP) is a Ca(2+) -requiring mega-channel which, under pathological conditions, leads to the deregulated release of Ca(2+) and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1, 5-(3-hydroxyphenyl)-N-(3,4,5-trimethoxyphenyl)isoxazole-3-carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50 <0.39 µM) and showed no interference on the inner mitochondrial membrane potential (rhodamine 123 uptake EC50 >100 µM). This enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria. Finally, the therapeutic potential and in vivo efficacy of one of the most potent analogues, N-(3-chloro-2-methylphenyl)-5-(4-fluoro-3-hydroxyphenyl)isoxazole-3-carboxamide (60), was validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.


Subject(s)
Drug Discovery , Isoxazoles/pharmacology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Calcium/metabolism , Dose-Response Relationship, Drug , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Molecular Structure , Structure-Activity Relationship
11.
J Biol Chem ; 289(23): 15980-5, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24790105

ABSTRACT

Purified F-ATP synthase dimers of yeast mitochondria display Ca(2+)-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca(2+) ionophore ETH129, which allows electrophoretic Ca(2+) uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.


Subject(s)
Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/enzymology , Blotting, Western , Dimerization , Electrophoresis, Polyacrylamide Gel , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Permeability Transition Pore
12.
J Biol Chem ; 289(20): 13769-81, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24692541

ABSTRACT

Translocator protein of 18 kDa (TSPO) is a highly conserved, ubiquitous protein localized in the outer mitochondrial membrane, where it is thought to play a key role in the mitochondrial transport of cholesterol, a key step in the generation of steroid hormones. However, it was first characterized as the peripheral benzodiazepine receptor because it appears to be responsible for high affinity binding of a number of benzodiazepines to non-neuronal tissues. Ensuing studies have employed natural and synthetic ligands to assess the role of TSPO function in a number of natural and pathological circumstances. Largely through the use of these compounds and biochemical associations, TSPO has been proposed to play a role in the mitochondrial permeability transition pore (PTP), which has been associated with cell death in many human pathological conditions. Here, we critically assess the role of TSPO in the function of the PTP through the generation of mice in which the Tspo gene has been conditionally eliminated. Our results show that 1) TSPO plays no role in the regulation or structure of the PTP, 2) endogenous and synthetic ligands of TSPO do not regulate PTP activity through TSPO, 3) outer mitochondrial membrane regulation of PTP activity occurs though a mechanism that does not require TSPO, and 4) hearts lacking TSPO are as sensitive to ischemia-reperfusion injury as hearts from control mice. These results call into question a wide variety of studies implicating TSPO in a number of pathological processes through its actions on the PTP.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Receptors, GABA/metabolism , Animals , Female , Gene Deletion , Liver/cytology , Liver/metabolism , Male , Mice , Mitochondrial Permeability Transition Pore , Myocardium/cytology , Myocardium/metabolism , Permeability , Receptors, GABA/deficiency , Receptors, GABA/genetics
13.
Biochim Biophys Acta ; 1807(12): 1600-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21889488

ABSTRACT

We have investigated the mechanism of rat-selective induction of the mitochondrial permeability transition (PT) by norbormide (NRB). We show that the inducing effect of NRB on the PT (i) is inhibited by the selective ligands of the 18kDa outer membrane (OMM) translocator protein (TSPO, formerly peripheral benzodiazepine receptor) protoporphyrin IX, N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one; and (ii) is lost in digitonin mitoplasts, which lack an intact OMM. In mitoplasts the PT can still be induced by the NRB cationic derivative OL14, which contrary to NRB is also effective in intact mitochondria from mouse and guinea pig. We conclude that selective NRB transport into rat mitochondria occurs via TSPO in the OMM, which allows its translocation to PT-regulating sites in the inner membrane. Thus, species-specificity of NRB toward the rat PT depends on subtle differences in the structure of TSPO or of TSPO-associated proteins affecting its substrate specificity.


Subject(s)
Carrier Proteins/metabolism , Mitochondria, Liver/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Norbornanes/pharmacology , Receptors, GABA-A/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Guinea Pigs , Mice , Mitochondria, Liver/metabolism , Mitochondria, Liver/ultrastructure , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Permeability Transition Pore , Molecular Sequence Data , Molecular Structure , Rats , Rats, Wistar , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Rodenticides/pharmacology , Sequence Alignment , Substrate Specificity
14.
Biochim Biophys Acta ; 1807(5): 482-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21377443

ABSTRACT

The mitochondrial permeability transition is an increase of permeability of the inner mitochondrial membrane to ions and solutes with an exclusion size of about 1500Da. It is generally accepted that the permeability transition is due to opening of a high-conductance channel, the permeability transition pore. Although the molecular nature of the permeability transition pore remains undefined, a great deal is known about its regulation and role in pathophysiology. This review specifically covers the characterization of the permeability transition pore by chemical modification of specific residues through photoirradiation of mitochondria after treatment with porphyrins. The review also illustrates the basic principles of the photodynamic effect and the mechanisms of phototoxicity and discusses the unique properties of singlet oxygen generated by specific porphyrins in discrete mitochondrial domains. These experiments provided remarkable information on the role, interactions and topology of His and Cys residues in permeability transition pore modulation and defined an important role for the outer membrane 18kDa translocator protein (formerly known as the peripheral benzodiazepine receptor) in regulation of the permeability transition.


Subject(s)
Mitochondrial Membrane Transport Proteins , Animals , Dermatitis, Phototoxic/etiology , Humans , Light , Mitochondrial Permeability Transition Pore , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Receptors, GABA/physiology , Singlet Oxygen/metabolism
15.
J Biol Chem ; 286(2): 1046-53, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21062740

ABSTRACT

We studied the properties of the permeability transition pore (PTP) in rat liver mitochondria and in mitoplasts retaining inner membrane ultrastructure and energy-linked functions. Like mitochondria, mitoplasts readily underwent a permeability transition following Ca(2+) uptake in a process that maintained sensitivity to cyclosporin A. On the other hand, major differences between mitochondria and mitoplasts emerged in PTP regulation by ligands of the outer membrane translocator protein of 18 kDa, TSPO, formerly known as the peripheral benzodiazepine receptor. Indeed, (i) in mitoplasts, the PTP could not be activated by photo-oxidation after treatment with dicarboxylic porphyrins endowed with protoporphyrin IX configuration, which bind TSPO in intact mitochondria; and (ii) mitoplasts became resistant to the PTP-inducing effects of N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and of other selective ligands of TSPO. Thus, the permeability transition is an inner membrane event that is regulated by the outer membrane through specific interactions with TSPO.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Porphyrins/pharmacokinetics , Receptors, GABA-A/metabolism , Animals , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Digitonin/pharmacology , Membrane Potential, Mitochondrial/physiology , Mitochondria, Liver/drug effects , Mitochondrial Membranes/drug effects , Oxidation-Reduction , Photochemical Processes , Porphyrins/chemistry , Rats , Rats, Wistar
16.
Biochim Biophys Acta ; 1787(7): 897-904, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19344690

ABSTRACT

We have studied the mitochondrial permeability transition pore (PTP) under oxidizing conditions with mitochondria-bound hematoporphyrin, which generates reactive oxygen species (mainly singlet oxygen, (1)O(2)) upon UV/visible light-irradiation and promotes the photooxidative modification of vicinal targets. We have characterized the PTP-modulating properties of two major critical sites endowed with different degrees of photosensitivity: (i) the most photovulnerable site comprises critical histidines, whose photomodification by vicinal hematoporphyrin causes a drop in reactivity of matrix-exposed (internal), PTP-regulating cysteines thus stabilizing the pore in a closed conformation; (ii) the most photoresistant site coincides with the binding domains of (external) cysteines sensitive to membrane-impermeant reagents, which are easily unmasked when oxidation of internal cysteines is prevented. Photooxidation of external cysteines promoted by vicinal hematoporphyrin reactivates the PTP after the block caused by histidine photodegradation. Thus, hematoporphyrin-mediated photooxidative stress can either inhibit or activate the mitochondrial permeability transition depending on the site of hematoporphyrin localization and on the nature of the substrate; and selective photomodification of different hematoporphyrin-containing pore domains can be achieved by fine regulation of the sensitizer/light doses. These findings shed new light on PTP modulation by oxidative stress.


Subject(s)
Hematoporphyrins/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Oxidative Stress , Sulfhydryl Compounds/metabolism , Animals , Calcium/pharmacology , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Hydrogen Peroxide/pharmacology , Light , Mitochondria, Liver/ultrastructure , Mitochondrial Permeability Transition Pore , Oxidants/pharmacology , Oxidation-Reduction , Permeability , Photochemistry , Rats , Rats, Wistar , Singlet Oxygen/metabolism , Time Factors , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...