Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 28(12): 1716-1727.e6, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34289376

ABSTRACT

GAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach. These inhibitors bind to GAS41 YEATS domain in a channel constituting a recognition site for acylated lysine on histone proteins. To enhance inhibitory activity, we developed a dimeric analog with nanomolar activity that blocks interactions of GAS41 with acetylated histone H3. Our lead compound engages GAS41 in cells, blocks proliferation of NSCLC cells, and modulates expression of GAS41-dependent genes, validating on-target mechanism of action. This study demonstrates that disruption of GAS41 protein-protein interactions may represent an attractive approach to target lung cancer cells. This work exemplifies the use of bivalent inhibitors as a general strategy to block challenging protein-protein interactions.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Thiophenes/pharmacology , Transcription Factors/antagonists & inhibitors , Amides/chemistry , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Molecular Structure , Protein Interaction Domains and Motifs/drug effects , Thiophenes/chemistry , Transcription Factors/metabolism
2.
Nat Chem Biol ; 17(7): 784-793, 2021 07.
Article in English | MEDLINE | ID: mdl-34155404

ABSTRACT

Polycomb repressive complex 1 (PRC1) is an essential chromatin-modifying complex that monoubiquitinates histone H2A and is involved in maintaining the repressed chromatin state. Emerging evidence suggests PRC1 activity in various cancers, rationalizing the need for small-molecule inhibitors with well-defined mechanisms of action. Here, we describe the development of compounds that directly bind to RING1B-BMI1, the heterodimeric complex constituting the E3 ligase activity of PRC1. These compounds block the association of RING1B-BMI1 with chromatin and inhibit H2A ubiquitination. Structural studies demonstrate that these inhibitors bind to RING1B by inducing the formation of a hydrophobic pocket in the RING domain. Our PRC1 inhibitor, RB-3, decreases the global level of H2A ubiquitination and induces differentiation in leukemia cell lines and primary acute myeloid leukemia (AML) samples. In summary, we demonstrate that targeting the PRC1 RING domain with small molecules is feasible, and RB-3 represents a valuable chemical tool to study PRC1 biology.


Subject(s)
Polycomb Repressive Complex 1/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Humans , K562 Cells , Models, Molecular , Molecular Structure , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL