Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Mol Cancer Ther ; 22(6): 765-777, 2023 06 01.
Article En | MEDLINE | ID: mdl-37042205

MET, the cell-surface receptor for the hepatocyte growth factor/scatter factor, which is widely overexpressed in various solid cancer types, is an attractive target for the development of antibody-based therapeutics. BYON3521 is a novel site-specifically conjugated duocarmycin-based antibody-drug conjugate (ADC), comprising a humanized cysteine-engineered IgG1 monoclonal antibody with low pmol/L binding affinity towards both human and cynomolgus MET. In vitro studies showed that BYON3521 internalizes efficiently upon MET binding and induces both target- and bystander-mediated cell killing. BYON3521 showed good potency and full efficacy in MET-amplified and high MET-expressing cancer cell lines; in moderate and low MET-expressing cancer cell lines good potencies and partial efficacy were observed. In mouse xenograft models, BYON3521 showed significant antitumor activity upon single-dose administration in multiple non-MET-amplified tumor types with low, moderate, and high MET expression, including complete tumor remissions in models with moderate MET expression. In the repeat-dose Good Laboratory Practice (GLP) safety assessment in cynomolgus monkeys, BYON3521 was well tolerated and based on the observed toxicities and their reversibility, the highest non-severely toxic dose was set at 15 mg/kg. A human pharmacokinetics (PK) model was derived from the PK data from the cynomolgus safety assessments, and the minimal efficacious dose in humans is estimated to be in the range of 3 to 4 mg/kg. In all, our nonclinical data suggests that BYON3521 is a safe ADC with potential for clinical benefit in patients. A first-in-human dose-escalation study is currently ongoing to determine the maximum tolerated dose and recommended dose for expansion (NCT05323045).


Antibodies, Monoclonal , Immunoconjugates , Animals , Humans , Mice , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Immunoglobulin G , Xenograft Model Antitumor Assays
2.
J Immunother Cancer ; 11(4)2023 04.
Article En | MEDLINE | ID: mdl-37068796

BACKGROUND: Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy. METHOD: We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies. RESULTS: BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys. CONCLUSIONS: Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023.


CD47 Antigen , Neoplasms , Mice , Animals , Humans , T-Lymphocytes/metabolism , Rituximab , Macrophages , Neoplasms/drug therapy , Antibodies, Neoplasm
3.
Bioorg Med Chem ; 84: 117258, 2023 04 15.
Article En | MEDLINE | ID: mdl-37001244

The thyrotropin receptor (TSH-R) regulates the thyroid gland and is normally activated by thyrotropin. In patients with Graves' disease, TSH-R is also stimulated by stimulatory TSH-R autoantibodies leading to hyperthyroidism. In this paper, we describe the discovery of SYD5115 (67), a novel small molecule TSH-R antagonist with nanomolar potency. SYD5115 also blocks stimulating antibody induced synthesis of the thyroid hormone thyroxine (T4) in vivo, after a single oral dose. During optimization, several issues had to be addressed such as the low metabolic stability and the potential mutagenicity of our first series of compounds.


Graves Disease , Receptors, Thyrotropin , Humans , Autoantibodies , Graves Disease/drug therapy , Receptors, G-Protein-Coupled , Receptors, Thyrotropin/antagonists & inhibitors , Thyrotropin/metabolism
4.
Bioconjug Chem ; 31(9): 2136-2146, 2020 09 16.
Article En | MEDLINE | ID: mdl-32697078

Engineering cysteines at specific sites in antibodies to create well-defined ADCs for the treatment of cancer is a promising approach to increase the therapeutic index and helps to streamline the manufacturing process. Here, we report the development of an in silico screening procedure to select for optimal sites in an antibody to which a hydrophobic linker-drug can be conjugated. Sites were identified inside the cavity that is naturally present in the Fab part of the antibody. Conjugating a linker-drug to these sites demonstrated the ability of the antibody to shield the hydrophobic character of the linker-drug while resulting ADCs maintained their cytotoxic potency in vitro. Comparison of site-specific ADCs versus randomly conjugated ADCs in an in vivo xenograft model revealed improved efficacy and exposure. We also report a selective reducing agent that is able to reduce the engineered cysteines while leaving the interchain disulfides in the oxidized state. This enables us to manufacture site-specific ADCs without introducing impurities associated with the conventional reduction/oxidation procedure for site-specific conjugation.


Antibiotics, Antineoplastic/chemistry , Cysteine/chemistry , Duocarmycins/analogs & derivatives , Immunoconjugates/chemistry , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Duocarmycins/therapeutic use , Humans , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/therapeutic use , Immunoglobulin G/chemistry , Immunoglobulin G/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Oxidation-Reduction
5.
Mol Cancer Ther ; 17(11): 2389-2398, 2018 11.
Article En | MEDLINE | ID: mdl-30093567

Carboxylesterase 1c (CES1c) is responsible for linker-drug instability and poor pharmacokinetics (PK) of several antibody-drug conjugates (ADC) in mice, but not in monkeys or humans. Preclinical development of these ADCs could be improved if the PK in mice would more closely resemble that of humans and is not affected by an enzyme that is irrelevant for humans. SYD985, a HER2-targeting ADC based on trastuzumab and linker-drug vc-seco-DUBA, is also sensitive to CES1c. In the present studies, we first focused on the interaction between CES1c and SYD985 by size- exclusion chromatography, Western blotting, and LC/MS-MS analysis, using recombinant CES1c and plasma samples. Intriguingly, CES1c activity not only results in release of the active toxin DUBA but also in formation of a covalent bond between CES1c and the linker of vc-seco-DUBA. Mass spectrometric studies enabled identification of the CES1c cleavage site on the linker-drug and the structure of the CES1c adduct. To assess the in vivo impact, CES1c-/- SCID mice were generated that showed stable PK for SYD985, comparable to that in monkeys and humans. Patient-derived xenograft (PDX) studies in these mice showed enhanced efficacy compared with PDX studies in CES1c+/+ mice and provided a more accurate prediction of clinical efficacy of SYD985, hence delivering better quality data. It seems reasonable to assume that CES1c-/- SCID mice can increase quality in ADC development much broader for all ADCs that carry linker-drugs susceptible to CES1c, without the need of chemically modifying the linker-drug to specifically increase PK in mice. Mol Cancer Ther; 17(11); 2389-98. ©2018 AACR.


Carboxylesterase/deficiency , Immunoconjugates/pharmacology , Immunoconjugates/pharmacokinetics , Animals , Carboxylesterase/metabolism , Catalytic Domain , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Mice, Knockout , Mice, SCID , Peptides/chemistry , Rats, Wistar , Trastuzumab/chemistry , Treatment Outcome
6.
MAbs ; 8(1): 74-86, 2016.
Article En | MEDLINE | ID: mdl-26440530

Monomeric IgA has been proposed as an alternative antibody format for cancer therapy. Here, we present our studies on the production, purification and functional evaluation of anti-HER2 IgA antibodies as anti-cancer agents in comparison to the anti-HER2 IgG1 trastuzumab. MALDI-TOF MS analysis showed profound differences in glycosylation traits across the IgA isotypes and cell lines used for production, including sialylation and linkage thereof, fucosylation (both core and antennary) and the abundance of high-mannose type species. Increases in sialylation proved to positively correlate with in vivo plasma half-lives. The polymerization propensity of anti-HER2 IgA2m2 could be suppressed by an 18-aa deletion of the heavy chain tailpiece - coinciding with the loss of high-mannose type N-glycan species - as well as by 2 cysteine to serine mutations at positions 320 and 480. The HER2 F(ab')2-mediated anti-proliferative effect of the IgA2m1 and IgA2m2 subtypes was similar to IgG1, whereas the IgA1 isotype displayed considerably lower potency and efficacy. The Fc-mediated induction of antibody-dependent cell-mediated cytotoxicity (ADCC) using human whole blood ADCC assays did not demonstrate such clear differences between the IgA isotypes. However, the potency of the anti-HER2 IgA antibodies in these ADCC assays was found to be significantly lower than that of trastuzumab. In vivo anti-tumor activity of the anti-HER2 IgA antibodies was compared to that of trastuzumab in a BT-474 breast cancer xenograft model. Multiple dosing and sialylation of the IgA antibodies compensated for the short in vivo half-life of native IgA antibodies in mice compared to a single dose of IgG1. In the case of the IgA2m2 antibody, the resulting high plasma exposure levels were sufficient to cause clear tumor stasis comparable to that observed for trastuzumab at much lower plasma exposure levels.


Antibodies, Neoplasm/pharmacology , Breast Neoplasms/drug therapy , N-Acetylneuraminic Acid , Polysaccharides , Receptor, ErbB-2/antagonists & inhibitors , Trastuzumab/pharmacology , Animals , Breast Neoplasms/blood , Cell Line, Tumor , Female , Glycosylation , Humans , Immunoglobulin A , Immunoglobulin G , Mice , Xenograft Model Antitumor Assays
7.
MAbs ; 8(1): 87-98, 2016.
Article En | MEDLINE | ID: mdl-26466856

Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.


Histocompatibility Antigens Class I/metabolism , Immunoglobulin A , Neoplasms, Experimental/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptors, Fc/metabolism , Trastuzumab , Animals , Female , Half-Life , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/genetics , Immunoglobulin A/pharmacology , Mice , Mice, Transgenic , Neoplasms, Experimental/blood , Protein Structure, Tertiary , Receptors, Fc/genetics , Trastuzumab/chemistry , Trastuzumab/genetics , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
8.
Cancer Immunol Res ; 3(12): 1316-24, 2015 Dec.
Article En | MEDLINE | ID: mdl-26407589

Efficacy of anticancer monoclonal antibodies (mAb) is limited by the exhaustion of effector mechanisms. IgG mAbs mediate cellular effector functions through FcγRs expressed on effector cells. IgA mAbs can also induce efficient tumor killing both in vitro and in vivo. IgA mAbs recruit FcαRI-expressing effector cells and therefore initiate different effector mechanisms in vivo compared with IgG. Here, we studied killing of tumor cells coexpressing EGFR and HER2 by the IgG mAbs cetuximab and trastuzumab and their IgA variants. In the presence of a heterogeneous population of effector cells (leukocytes), the combination of IgG and IgA mAbs to two different tumor targets (EGFR and HER2) led to enhanced cytotoxicity compared with each isotype alone. Combination of two IgGs or two IgAs or IgG and IgA against the same target did not enhance cytotoxicity. Increased cytotoxicity relied on the presence of both the peripheral blood mononuclear cell and the polymorphonuclear (PMN) fraction. Purified natural killer cells were only cytotoxic with IgG, whereas cytotoxicity induced by PMNs was strong with IgA and poor with IgG. Monocytes, which coexpress FcγRs and FcαRI, also displayed increased cytotoxicity by the combination of IgG and IgA in an overnight killing assay. Coinjection of cetuximab and IgA2-HER2 resulted in increased antitumor effects compared with either mAb alone in a xenograft model with A431-luc2-HER2 cells. Thus, the combination of IgG and IgA isotypes optimally mobilizes cellular effectors for cytotoxicity, representing a promising novel strategy to improve mAb therapy.


Antigens, CD/immunology , Antineoplastic Agents/pharmacology , Cetuximab/pharmacology , ErbB Receptors/immunology , Immunotherapy/methods , Receptor, ErbB-2/immunology , Receptors, Fc/immunology , Receptors, IgG/immunology , Trastuzumab/pharmacology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cetuximab/immunology , ErbB Receptors/biosynthesis , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Mice , Neoplasms/immunology , Neutrophils/immunology , Receptor, ErbB-2/biosynthesis , Trastuzumab/immunology , Xenograft Model Antitumor Assays
9.
Mol Pharm ; 12(6): 1813-35, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25635711

Antibody-drug conjugates (ADCs) that are currently on the market or in clinical trials are predominantly based on two drug classes: auristatins and maytansinoids. Both are tubulin binders and block the cell in its progression through mitosis. We set out to develop a new class of linker-drugs based on duocarmycins, potent DNA-alkylating agents that are composed of a DNA-alkylating and a DNA-binding moiety and that bind into the minor groove of DNA. Linker-drugs were evaluated as ADCs by conjugation to the anti-HER2 antibody trastuzumab via reduced interchain disulfides. Duocarmycin 3b, bearing an imidazo[1,2-a]pyridine-based DNA-binding unit, was selected as the drug moiety, notably because of its rapid degradation in plasma. The drug was incorporated into the linker-drugs in its inactive prodrug form, seco-duocarmycin 3a. Linker attachment to the hydroxyl group in the DNA-alkylating moiety was favored over linking to the DNA-binding moiety, as the first approach gave more consistent results for in vitro cytotoxicity and generated ADCs with excellent human plasma stability. Linker-drug 2 was eventually selected based on the properties of the corresponding trastuzumab conjugate, SYD983, which had an average drug-to-antibody ratio (DAR) of about 2. SYD983 showed subnanomolar potencies against multiple human cancer cell lines, was highly efficacious in a BT-474 xenograft model, and had a long half-life in cynomolgus monkeys, in line with high stability in monkey and human plasma. Studies comparing ADCs with a different average DAR showed that a higher average DAR leads to increased efficacy but also to somewhat less favorable physicochemical and toxicological properties. Fractionation of SYD983 with hydrophobic interaction chromatography resulted in SYD985, consisting of about 95% DAR2 and DAR4 species in an approximate 2:1 ratio and having an average DAR of about 2.8. SYD985 combines several favorable properties from the unfractionated ADCs with an improved homogeneity. It was selected for further development and recently entered clinical Phase I evaluation.


Immunoconjugates/chemistry , Indoles/chemistry , Receptor, ErbB-2/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Duocarmycins , Humans , Immunoconjugates/pharmacokinetics , Pyrrolidinones/chemistry
10.
Mol Cancer Ther ; 14(3): 692-703, 2015 Mar.
Article En | MEDLINE | ID: mdl-25589493

SYD985 is a HER2-targeting antibody-drug conjugate (ADC) based on trastuzumab and vc-seco-DUBA, a cleavable linker-duocarmycin payload. To evaluate the therapeutic potential of this new ADC, mechanistic in vitro studies and in vivo patient-derived xenograft (PDX) studies were conducted to compare SYD985 head-to-head with T-DM1 (Kadcyla), another trastuzumab-based ADC. SYD985 and T-DM1 had similar binding affinities to HER2 and showed similar internalization. In vitro cytotoxicity assays showed similar potencies and efficacies in HER2 3+ cell lines, but in cell lines with low HER2 expression, SYD985 was 3- to 50-fold more potent than T-DM1. In contrast with T-DM1, SYD985 efficiently induced bystander killing in vitro in HER2-negative (HER2 0) cells mixed with HER2 3+, 2+, or 1+ cell lines. At pH conditions relevant for tumors, cathepsin-B cleavage studies showed efficient release of the active toxin by SYD985 but not by T-DM1. These in vitro data suggest that SYD985 might be a more potent ADC in HER2-expressing tumors in vivo, especially in low HER2-expressing and/or in heterogeneous tumors. In line with this, in vivo antitumor studies in breast cancer PDX models showed that SYD985 is very active in HER2 3+, 2+, and 1+ models, whereas T-DM1 only showed significant antitumor activity in HER2 3+ breast cancer PDX models. These properties of SYD985 may enable expansion of the target population to patients who have low HER2-expressing breast cancer, a patient population with still unmet high medical need.


Antibodies, Monoclonal/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Indoles/pharmacology , Receptor, ErbB-2/genetics , Animals , Cell Line, Tumor , Duocarmycins , Female , Humans , Mice , Mice, Nude , Pyrrolidinones/pharmacology , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays/methods
11.
Mol Cancer Ther ; 13(11): 2618-29, 2014 Nov.
Article En | MEDLINE | ID: mdl-25189543

A linker-drug platform was built on the basis of a cleavable linker-duocarmycin payload for the development of new-generation antibody-drug conjugates (ADC). A leading ADC originating from that platform is SYD983, a HER2-targeting ADC based on trastuzumab. HER2-binding, antibody-dependent cell-mediated cytotoxicity and HER2-mediated internalization are similar for SYD983 as compared with trastuzumab. HER2-expressing cells in vitro are very potently killed by SYD983, but SYD983 is inactive in cells that do not express HER2. SYD983 dose dependently reduces tumor growth in a BT-474 mouse xenograft in vivo. The ADC is stable in human and cynomolgus monkey plasma in vitro but shows relatively poor stability in mouse plasma due to mouse-specific carboxylesterase. SYD983 could be dosed up to 30 mg/kg in cynomolgus monkeys with high exposure, excellent stability in blood, and without severe toxic effects. The monkey safety study showed no SYD983-induced thrombocytopenia and no induction of peripheral sensory neuropathy, both commonly observed in trials and studies with ADCs based on tubulin inhibitors. Finally, to improve homogeneity, SYD983 was further purified by hydrophobic interaction chromatography resulting in an ADC (designated SYD985) predominantly containing DAR2 and DAR4 species. SYD985 showed high antitumor activity in two patient-derived xenograft models of HER2-positive metastatic breast cancers. In conclusion, the data obtained indicate great potential for this new HER2-targeting ADC to become an effective drug for patients with HER2-positive cancers with a favorable safety profile. More generally, this new-generation duocarmycin-based linker-drug technology could be used with other mAbs to serve more indications in oncology.


Immunotoxins/administration & dosage , Indoles/administration & dosage , Receptor, ErbB-2/metabolism , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Duocarmycins , Female , Humans , Immunotoxins/chemistry , Indoles/chemistry , Indoles/pharmacokinetics , Mice , Mice, Inbred BALB C , Molecular Targeted Therapy , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacokinetics , Random Allocation , Xenograft Model Antitumor Assays
12.
Nutrition ; 24(9): 860-8, 2008 Sep.
Article En | MEDLINE | ID: mdl-18725084

OBJECTIVES: The role of neuropeptides in nervous system function is still in many cases undefined. In the present study we examined a possible role of the 36-amino acid neuropeptide Y (NPY) with regard to three functions: axon guidance and attraction/repulsion, adult neurogenesis, and control of food intake. METHODS: Growth cones from embryonic dorsal root ganglion neurons were studied in culture during asymmetrical gradient application of NPY. Growth cones were monitored over a 60-min period, and final turning angle and growth rate were recorded. In the second part the NPY Y(1) and Y(2) receptors were studied in the subventricular zone, the rostral migratory stream, and the olfactory bulb in normal mice and mice with genetically deleted NPY Y(1) or Y(2) receptors. In the third part an anorectic mouse was analyzed with immunohistochemistry. RESULTS: 1) NPY elicited an attractive turning response and an increase in growth rate, effects exerted via the NPY Y(1) receptor. 2) The NPY Y(1) receptor was expressed in neuroblasts in the anterior rostral migratory stream. Mice deficient in the Y(1) or Y(2) receptor had fewer proliferating precursor cells and neuroblasts in the subventricular zone and rostral migratory stream and fewer neurons in the olfactory bulb expressing calbindin, calretinin or tyrosine hydroxylase. 3) In the anorectic mouse markers for microglia were strongly upregulated in the arcuate nucleus and in projection areas of the NPY/agouti gene-related protein arcuate system. CONCLUSION: NPY participates in several mechanisms involved in the development of the nervous system and is of importance in the control of food intake.


Anorexia/physiopathology , Axons/physiology , Feeding Behavior , Neurogenesis/physiology , Neuropeptide Y/physiology , Animals , Anorexia/genetics , Disease Models, Animal , Eating , Mice
13.
Trends Neurosci ; 26(11): 604-9, 2003 Nov.
Article En | MEDLINE | ID: mdl-14585600

The term neuropeptide was advanced by de Wied and collaborators in the early seventies. At that time, they defined neuropeptides as endogenous substances synthesized in nerve cells and involved in nervous system functions. Since then, several studies have revealed that the very same 'neuropeptides' are also expressed in non-neuronal cells. It is therefore generally accepted that the original definition of these peptides was too limited and, consequently, it has recently been revised. Among the non-neuronal cells that synthesize neuropeptides are several glial cell types.


Galanin/metabolism , Neuroglia/metabolism , Neuropeptide Y/metabolism , Animals , Central Nervous System/metabolism , Humans , Neuropeptides/classification , Neuropeptides/metabolism , Schwann Cells/metabolism , Tissue Distribution
...