Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Diabetes Obes Metab ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951936

ABSTRACT

AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.

2.
Diabetes Obes Metab ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957925

ABSTRACT

AIM: To evaluate insulin and glucagon sensitivity in Han Chinese women with and without gestational diabetes mellitus (GDM). METHODS: In total, 81 women with GDM and 81 age-matched healthy controls were evaluated with a 75 g oral glucose tolerance test (OGTT) at gestational weeks 24-28. Plasma glucose concentrations were measured at fasting and 1 h and 2 h post-OGTT. Fasting plasma insulin, glucagon and amino acids were also measured. Insulin and glucagon sensitivity were assessed by the homeostatic model assessment of insulin resistance (HOMA-IR) and glucagon-alanine index, respectively. RESULTS: As expected, plasma glucose concentrations were higher at fasting and 1 h and 2 h post-OGTT in GDM participants (p < .001 each). Both the HOMA-IR and the glucagon-alanine index were higher in GDM participants. There was a weak positive correlation between HOMA-IR and glucagon-alanine index (r = 0.24, p = .0024). Combining the HOMA-IR and the glucagon-alanine index yielded better capacity (area under the curve = 0.878) than either alone (area under the curve = 0.828 for HOMA-IR and 0.751 for glucagon-alanine index, respectively) in differentiating GDM from healthy participants. While the majority of GDM participants (64%) exhibited both reduced insulin and glucagon sensitivity, a third of them presented either reduced insulin (20%) or glucagon (14%) sensitivity alone. HOMA-IR and glucagon-alanine index correlated differentially with fasting glucose, triglycerides, low-density lipoprotein cholesterol, sum of amino acids and hepatic steatosis index. CONCLUSIONS: Impairments of both insulin and glucagon sensitivity occur frequently in Chinese women with GDM, which may, individually or together, drive metabolic derangements in GDM. These observations provide new insights into the pathophysiology of GDM and support the need to target insulin or glucagon resistance, or both, in the management of GDM.

3.
Diabetes Res Clin Pract ; : 111769, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971377

ABSTRACT

Elevated fasting glucagon concentrations and/or attenuated postprandial glucagon suppression are characteristics of type 2 diabetes (T2D) and contribute to hyperglycaemia. This study shows that hyperglucagonaemia is more prominent in males than females after a nutrient load in T2D, adding insights into sex differences in relation to the pathophysiology of T2D.

4.
JAMA ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046753
5.
Diabetes Obes Metab ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075922

ABSTRACT

AIM: To evaluate the effects of bariatric arterial embolization (BAE) on gastric emptying of, and the glycaemic response to, an oral glucose load in an obese canine model with impaired glucose tolerance. METHODS: Eleven male dogs were fed a high-fat, high-fructose diet for 7 weeks before receiving BAE, which involved selective embolization of the left gastric artery (n = 5; 14.9 ± 0.8 kg), or the sham (n = 6; 12.6 ± 0.8 kg) procedure. Postprocedural body weight was measured weekly for 4 weeks. Prior to and at 4 weeks postprocedure, a glucose solution containing 13C-acetate was administered orally for evaluation of the gastric half-emptying time (T50) and the glycaemic response. The relationship between the changes in the blood glucose area under the curve over the first 60 minutes (AUC0-60min) and the T50 was also assessed. RESULTS: At 4 weeks postprocedure, BAE reduced body weight (BAE vs. the sham procedure: -5.7% ± 0.9% vs. 3.5% ± 0.9%, P < .001), slowed gastric emptying (T50 at baseline vs. postprocedure: 75.5 ± 2.0 vs. 82.5 ± 1.8 minutes, P = .021 in the BAE group; 73.8 ± 1.8 vs. 74.3 ± 1.9 minutes in the sham group) and lowered the glycaemic response to oral glucose (AUC0-60min at baseline vs. postprocedure: 99.2 ± 13.7 vs. 67.6 ± 9.8 mmol·min/L, P = .043 in the BAE group; 100.2 ± 13.4 vs. 103.9 ± 14.6 mmol·min/L in the sham group). The change in the glucose AUC0-60min correlated inversely with that of the T50 (r = -0.711; P = .014). CONCLUSIONS: In a canine model with impaired glucose tolerance, BAE, while reducing body weight, slowed gastric emptying and attenuated the glycaemic response to an oral glucose load.

8.
Diabetes Obes Metab ; 26(8): 3078-3087, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38698647

ABSTRACT

AIM: To evaluate gastric emptying (GE) and the glycaemic response to a 75-g oral glucose load in newly diagnosed, treatment-naïve Han Chinese with type 2 diabetes (T2D) before insulin pump therapy, after 4 weeks of insulin pump therapy, and 12-15 months after insulin pump therapy. MATERIALS AND METHODS: Twenty participants with T2D (baseline glycated haemoglobin [± SD] 10.7% [± 1.2%] 93 [± 10] mmol/mol) ingested a 75-g glucose drink containing 150 mg 13C-acetate, to determine the gastric half-emptying time, and underwent assessment of plasma glucose and serum insulin, C-peptide and glucagon-like peptide-1 (GLP-1) over 180 min before and after 4 weeks of insulin pump therapy (discontinued for 48 h before re-assessment). Data were compared to those in 19 healthy participants matched for sex and age. After 12-15 months, GE was re-measured in 14 of the T2D participants. RESULTS: At baseline, participants with T2D exhibited substantially augmented fasting and post-glucose glycaemia, diminished insulin secretion, and more rapid GE (p < 0.05 each), but comparable GLP-1, compared to healthy participants. Following insulin pump therapy, insulin secretion increased, GLP-1 secretion was attenuated, fasting and post-glucose glycaemia were lower, and GE was slowed (p < 0.05 each). The slowing of GE in T2D participants was sustained over 12-15 months of follow-up. CONCLUSIONS: In newly diagnosed Han Chinese with T2D, GE is often accelerated despite poor glycaemic control and is slowed by short-term insulin pump therapy. The effect on GE is maintained for at least 12 months.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Gastric Emptying , Hypoglycemic Agents , Insulin Infusion Systems , Insulin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Gastric Emptying/drug effects , Blood Glucose/analysis , Blood Glucose/metabolism , Insulin/administration & dosage , Hypoglycemic Agents/administration & dosage , China , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Adult , Asian People , Glucagon-Like Peptide 1/administration & dosage , C-Peptide/blood , Insulin Secretion/drug effects , Glucose Tolerance Test , East Asian People
9.
Diabetes Obes Metab ; 26(8): 3119-3127, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38698649

ABSTRACT

AIM: To evaluate sex differences in gastric emptying and the glycaemic response to a glucose drink and a high carbohydrate meal in type 2 diabetes (T2D). METHODS: In cohort 1, 70 newly diagnosed, treatment-naïve Chinese patients with T2D (44 men) recruited from a diabetes outpatient clinic ingested a 75-g glucose drink containing 150 mg 13C-acetate. In cohort 2, 101 Australian patients with T2D (67 male) recruited from the community, managed by diet and/or metformin monotherapy, ingested a semi-solid mashed potato meal, labelled with 100 µl 13C-octanoic acid. Breath samples were collected over 3 and 4 h, respectively, for assessment of gastric emptying, and venous blood was sampled for evaluation of glycaemia (with and without adjustment for each participant's estimated total blood volume). RESULTS: Gastric emptying was slower in female than male subjects in both cohorts (both p < .01). Multiple linear regression analyses revealed that gastric emptying was independently associated with sex (both p < .05). Without adjustment for blood volume, the glycaemic responses to oral glucose and the mixed meal were greater in female subjects (both p < .001). However, after adjustment for blood volume, the glycaemic responses were greater in men (both p < .05). CONCLUSIONS: Gastric emptying is slower in women than men with T2D, associated with a reduced blood volume-adjusted glycaemic response to oral glucose and a mixed meal in women. These observations highlight the sex difference in postprandial glucose handling, which is relevant to the personalized management of postprandial glycaemia in T2D.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Gastric Emptying , Postprandial Period , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Female , Male , Gastric Emptying/physiology , Middle Aged , Blood Glucose/metabolism , Blood Glucose/analysis , Sex Factors , Aged , Australia/epidemiology , Adult , Breath Tests , Cohort Studies , Dietary Carbohydrates/administration & dosage , Glucose/metabolism , China/epidemiology , Metformin/therapeutic use , Hypoglycemic Agents/therapeutic use , Hyperglycemia
11.
Diabetologia ; 67(7): 1260-1270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561463

ABSTRACT

AIMS/HYPOTHESIS: Metformin lowers postprandial glycaemic excursions in individuals with type 2 diabetes by modulating gastrointestinal function, including the stimulation of glucagon-like peptide-1 (GLP-1). The impact of varying the timing of metformin administration on postprandial glucose metabolism is poorly defined. We evaluated the effects of metformin, administered at different intervals before an intraduodenal glucose infusion, on the subsequent glycaemic, insulinaemic and GLP-1 responses in metformin-treated type 2 diabetes. METHODS: Sixteen participants with type 2 diabetes that was relatively well-controlled by metformin monotherapy were studied on four separate days in a crossover design. On each day, participants were randomised to receive a bolus infusion of metformin (1000 mg in 50 ml 0.9% saline) via a nasoduodenal catheter at t = -60, -30 or 0 min (and saline at the other timepoints) or saline at all timepoints (control), followed by an intraduodenal glucose infusion of 12.56 kJ/min (3 kcal/min) at t = 0-60 min. The treatments were blinded to both participants and investigators involved in the study procedures. Plasma glucose, insulin and total GLP-1 levels were measured every 30 min between t = -60 min and t = 120 min. RESULTS: There was a treatment-by-time interaction for metformin in reducing plasma glucose levels and increasing plasma GLP-1 and insulin levels (p<0.05 for each). The reduction in plasma glucose levels was greater when metformin was administered at t = -60 or -30 min vs t = 0 min (p<0.05 for each), and the increases in plasma GLP-1 levels were evident only when metformin was administered at t = -60 or -30 min (p<0.05 for each). Although metformin did not influence insulin sensitivity, it enhanced glucose-induced insulin secretion (p<0.05), and the increases in plasma insulin levels were comparable on the 3 days when metformin was given. CONCLUSIONS/INTERPRETATION: In well-controlled metformin-treated type 2 diabetes, glucose-lowering by metformin is greater when it is given before, rather than with, enteral glucose, and this is associated with a greater GLP-1 response. These observations suggest that administration of metformin before meals may optimise its effect in improving postprandial glycaemic control. TRIAL REGISTRATION: www.anzctr.org.au ACTRN12621000878875 FUNDING: The study was not funded by a specific research grant.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Glucose , Hypoglycemic Agents , Metformin , Humans , Metformin/therapeutic use , Metformin/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Glucagon-Like Peptide 1/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Female , Middle Aged , Double-Blind Method , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Glucose/metabolism , Insulin/blood , Aged , Adult , Postprandial Period , Duodenum/metabolism , Duodenum/drug effects
12.
Nutr Diabetes ; 14(1): 13, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589353

ABSTRACT

BACKGROUND: Gastric emptying (GE), with wide inter-individual but lesser intra-individual variations, is a major determinant of postprandial glycaemia in health and type 2 diabetes (T2D). However, it is uncertain whether GE of a carbohydrate-containing liquid meal is predictive of the glycaemic response to physiological meals, and whether antecedent hyperglycaemia influences GE in T2D. We evaluated the relationships of (i) the glycaemic response to both a glucose drink and mixed meals with GE of a 75 g glucose drink, and (ii) GE of a glucose drink with antecedent glycaemic control, in T2D. METHODS: Fifty-five treatment-naive Chinese adults with newly diagnosed T2D consumed standardised meals at breakfast, lunch and dinner with continuous interstitial glucose monitoring. On the subsequent day, a 75 g glucose drink containing 150 mg 13C-acetate was ingested to assess GE (breath test) and plasma glucose response. Serum fructosamine and HbA1c were also measured. RESULTS: Plasma glucose incremental area under the curve (iAUC) within 2 hours after oral glucose was related inversely to the gastric half-emptying time (T50) (r = -0.34, P = 0.012). The iAUCs for interstitial glucose within 2 hours after breakfast (r = -0.34, P = 0.012) and dinner (r = -0.28, P = 0.040) were also related inversely to the T50 of oral glucose. The latter, however, was unrelated to antecedent fasting plasma glucose, 24-hour mean interstitial glucose, serum fructosamine, or HbA1c. CONCLUSIONS: In newly diagnosed, treatment-naive, Chinese with T2D, GE of a 75 g glucose drink predicts the glycaemic response to both a glucose drink and mixed meals, but is not influenced by spontaneous short-, medium- or longer-term elevation in glycaemia.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Adult , Humans , Blood Glucose , Glycated Hemoglobin , Gastric Emptying , Glycemic Control , Blood Glucose Self-Monitoring , Fructosamine , Meals , Postprandial Period , Insulin , Cross-Over Studies
13.
Am J Physiol Endocrinol Metab ; 326(4): E537-E544, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38477876

ABSTRACT

There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.


Subject(s)
Islets of Langerhans , Quaternary Ammonium Compounds , Taste , Mice , Animals , Glucagon/pharmacology , Insulin/pharmacology , Glucose/pharmacology , Glucagon-Like Peptide 1/pharmacology , Somatostatin/pharmacology , Adenosine Triphosphate/pharmacology
14.
J Clin Endocrinol Metab ; 109(3): e1151-e1158, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37878955

ABSTRACT

CONTEXT: Prediabetes is associated with an increased risk of physical disability, yet no studies have assessed the extent to which muscle quality, a measure reflecting muscle functionality, was altered in prediabetes and its specific phenotype. OBJECTIVE: We evaluated their associations in a general US population with mediation analysis. METHODS: This was a cross-sectional study based on the National Health and Nutrition Examination Survey 2011-2014. Participants with prediabetes were stratified as having an isolated defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or impaired hemoglobin A1c [IA1c]), 2 defects (IFG + IGT, IFG + IA1c, or IGT + IA1c), or all defects (IFG + IGT + IA1c). Muscle quality was calculated as dominant grip strength divided by dominant arm muscle mass measured by dual-energy X-ray absorptiometry. RESULTS: We included 2351 participants (938 with prediabetes and 1413 with normoglycemia). Despite higher grip strength and larger arm muscle mass, arm muscle quality was lower in prediabetes and all prediabetes phenotypes (except for IGT) than normoglycemia (all P < .04), and was unrelated to prediabetes awareness. Arm muscle quality was decreased and the odds of low arm muscle quality was increased in prediabetes with increasing numbers of glucometabolic defects (both P < .001), with insulin resistance being the predominant mediator. HbA1c-defined prediabetes (IA1c) had lower arm muscle quality and higher odds of low arm muscle quality than blood glucose-defined prediabetes (IFG, IGT, or IFG + IGT). CONCLUSION: Muscle quality was impaired in prediabetes and its specific phenotype. Relative to blood glucose, elevated HbA1c might be a better predictor of reduced muscle quality.


Subject(s)
Glucose Intolerance , Prediabetic State , Humans , Blood Glucose , Glycated Hemoglobin , Cross-Sectional Studies , Mediation Analysis , Nutrition Surveys , Muscles , Phenotype , Fasting
15.
Diabetes Metab J ; 47(6): 859-868, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915187

ABSTRACT

BACKGRUOUND: Prediabetes leads to declines in physical function in older adults, but the impact of prediabetes progression or regression on physical function is unknown. This study assessed this longitudinal association, with physical function objectivelymeasured by grip strength, walking speed, and standing balance, based on the Health and Retirement Study enrolling United States adults aged >50 years. METHODS: Participants with prediabetes were followed-up for 4-year to ascertain prediabetes status alteration (maintained, regressed, or progressed), and another 4-year to assess their impacts on physical function. Weak grip strength was defined as <26 kg for men and <16 kg for women, slow walking speed was as <0.8 m/sec, and poor standing balance was as an uncompleted fulltandem standing testing. Logistic and linear regression analyses were performed. RESULTS: Of the included 1,511 participants with prediabetes, 700 maintained as prediabetes, 306 progressed to diabetes, and 505 regressed to normoglycemia over 4 years. Grip strength and walking speed were declined from baseline during the 4-year followup, regardless of prediabetes status alteration. Compared with prediabetes maintenance, prediabetes progression increased the odds of developing weak grip strength by 89% (95% confidence interval [CI], 0.04 to 2.44) and exhibited larger declines in grip strength by 0.85 kg (95% CI, -1.65 to -0.04). However, prediabetes progression was not related to impairments in walking speed or standing balance. Prediabetes regression also did not affect any measures of physical function. CONCLUSION: Prediabetes progression accelerates grip strength decline in aging population, while prediabetes regression may not prevent physical function decline due to aging.


Subject(s)
Diabetes Mellitus , Prediabetic State , Male , Humans , Female , United States/epidemiology , Aged , Prediabetic State/epidemiology , Prospective Studies , Aging , Regression Analysis
16.
Peptides ; 169: 171092, 2023 11.
Article in English | MEDLINE | ID: mdl-37673303

ABSTRACT

The liver plays a key role in glucose homeostasis. Serum liver enzyme levels, including alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamyl transferase (GGT), are reportedly predictive of the risk of type 2 diabetes (T2D). However, the link between the liver enzyme profile and metabolic derangements in T2D, particularly the secretion of both insulin and glucagon, is not clear. This study evaluated its relationships with glycemia, insulin and glucagon both during fasting and after an oral glucose load or a mixed meal in T2D. 15 healthy and 43 T2D subjects ingested a 75 g glucose drink. 86 T2D subjects consumed a mixed meal. Venous blood was sampled for measurements of blood glucose and plasma insulin, C-peptide and glucagon. Blood glucose, plasma insulin, C-peptide and glucagon concentrations, both fasting and after oral glucose, correlated directly with ALT, while fewer and weaker correlations were observed with GGT or AST. Subgroup analysis in T2D subjects ascertained that plasma insulin, C-peptide and glucagon concentrations after oral glucose were higher with increasing ALT. Similar findings were observed in the T2D subjects who received a mixed meal. In conclusion, serum liver enzyme profile, particularly ALT, reflects dysregulated fasting and nutrient-stimulated plasma insulin and glucagon concentrations in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Humans , Glucagon , Alanine Transaminase , Blood Glucose , C-Peptide , Fasting , Glucose
19.
Hum Vaccin Immunother ; 19(1): 2184754, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36864628

ABSTRACT

Patients with type 2 diabetes (T2D) are at an increased risk of morbidity and mortality of coronavirus disease 2019 (COVID-19). Data on the antibody response to COVID-19 vaccines in T2D patients are less studied. This study aimed to evaluate IgG antibody response to inactivated COVID-19 vaccines in hospitalized T2D patients. Hospitalized patients with no history of COVID-19 and received two doses of inactivated COVID-19 vaccines (Sinopharm or CoronaVac) were included in this study from March to October 2021. SARS-CoV-2 specific IgG antibodies were measured 14-60 days after the second vaccine dose. A total of 209 participants, 96 with T2D and 113 non-diabetes patients, were included. The positive rate and median titer of IgG antibody against receptor-binding domain (anti-RBD) of spike (S) protein of SARS-CoV-2 in T2D group were lower than in control group (67.7% vs 83.2%, p = .009; 12.93 vs 17.42 AU/ml, p = .014) respectively. Similarly, seropositivity and median titers of IgG antibody against the nucleocapsid (N) and S proteins of SARS-CoV-2 (anti-N/S) in T2D group were lower than in control group (68.8% vs 83.2%, p = .032; 18.81 vs 29.57 AU/mL, p = .012) respectively. After adjustment for age, sex, BMI, vaccine type, days after the second vaccine dose, hypertension, kidney disease, and heart disease, T2D was identified as an independent risk factor for negative anti-RBD and anti-N/S seropositivity, odd ratio 0.42 (95% confidence interval 0.19, 0.89) and 0.42 (95% CI 0.20, 0.91), respectively. T2D is associated with impaired antibody response to inactivated COVID-19 vaccine.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Vaccines, Inactivated
20.
Diabetes Obes Metab ; 25(7): 1849-1854, 2023 07.
Article in English | MEDLINE | ID: mdl-36864654

ABSTRACT

AIM: To evaluate the effect of gastric distension, induced using a gastric 'barostat', on the secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the presence and absence of small intestinal nutrients in healthy individuals. MATERIALS AND METHODS: Eight healthy participants (two females, six males, mean age 69.3 ± 1.2 years, body mass index 23.5 ± 0.8 kg/m2 ) were each studied on four occasions when they received an intraduodenal infusion of either (i) 0.9% saline or (ii) glucose delivered at a rate of 3 kcal/min both with, and without, an intragastric balloon with the pressure set to 8 mmHg above the intragastric minimum distending pressure. RESULTS: Following intraduodenal saline or glucose infusion, there was no difference in plasma GLP-1 with or without gastric distension (P = 1.00 for both saline and glucose infusions). There was also no difference in plasma GIP with or without gastric distension (P = 1.00 for saline infusion and P = .99 for glucose infusion). CONCLUSIONS: Gastric distension, either alone or during small intestinal glucose exposure, does not stimulate incretin hormone secretion significantly in healthy humans.


Subject(s)
Gastric Balloon , Glucose , Male , Female , Humans , Aged , Incretins , Cross-Over Studies , Blood Glucose , Saline Solution , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL