Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896411

ABSTRACT

With the rapid iteration of microsystem integrated technology, the miniaturization of electronic devices requires packaging materials with higher reliability. In this work, the microstructure evolution and mechanical properties of novel epoxy composite SAC305 solder joints were studied after isothermal aging to evaluate the enhanced effect of epoxy addition. The thickness variation and morphological evolution of the interfacial layer were analyzed. The results showed that, as the aging time was prolonged, the Cu6Sn5 interfacial layer remarkably coarsened and Cu3Sn compounds formed between the Cu6Sn5 layer and Cu pad due to the continuous atomic diffusion. Compared with the monolithic joint, the epoxy composite SAC305 joints had a lower overall IMC growth rate during aging, closely related to the initial morphologies of the interfacial layers. The shear test results showed an apparent decrease in the shear forces of all the solder joints as the aging time increased. Nevertheless, because of the extra mechanical support provided by the epoxy layer, the epoxy composite joints demonstrated notably enhanced mechanical properties. After 1000 h aging treatment, the shear force of SAC305 joints containing 8 wt.% epoxy was 26.28 N, showing a 24.08% increase over the monolithic joint. Cu-Sn IMCs were detected on the shear fracture of the monolithic joint after 1000 h aging, indicating the fracture occurred near the interface and displayed a ductile/brittle mixed fracture. Concerning the epoxy composite joints, cracks were still initiated and extended within the solder bulk, demonstrating a noticeable enhancement in ductility due to the addition of epoxy.

2.
Polymers (Basel) ; 14(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36501697

ABSTRACT

With the rapid development of microelectronics packaging technology, the demand for high-performance packaging materials has further increased. This paper developed novel epoxy-containing Sn-3.0Ag-0.5Cu (SAC305-ER) composite solder pastes, and the effects of epoxy resin on their spreading performance, microstructure, and shear behaviour were analysed. The research results showed that with the addition of epoxy resin, SAC305 solder pastes exhibited exceptional spreadability on Cu substrates, which could be attributed to the reduction in the viscosity and the surface tension of the composite solder pastes. With the addition of epoxy resin, the solder matrix microstructure and interfacial morphology of SAC305-ER composite solder joints remained unchanged. However, continuous resin protective layers were observed on the surface of SAC305-ER composite solder joints after the reflow process. The shear properties of the composite solder joints were enhanced by the extra mechanical bonding effect provided by resin layers. When the epoxy resin content was 8 wt%, the shear forces of SAC305-ER composite solder joints reached the maximum value. Fracture analysis indicated that cracked epoxy resin was observed on the surface of SAC305-ER composite solder joints, indicating that the epoxy resin also underwent obvious deformation in the shear test.

3.
Chemosphere ; 230: 527-535, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31125881

ABSTRACT

In this work, vacuum filtered and polymer mixed e-spinning membranes (ESPMs) made from or doped with Fe-based nanomaterials were successfully fabricated to remove Cd2+ ions from a neutral aqueous solution. The used Fe-based nanomaterials including FeOOH precursor Nanowires (NWs), α-Fe2O3 NWs and Fe3O4 nanoparticles (NPs) were synthesized by elevating the hydrothermal reaction temperature from 250 °C to 500 °C or doing post-heating treatment. The adsorption results showed that vacuum filtered membranes (VFMs) overall performed a better Cd2+ ions removal behavior than e-spinning ones. Among them, VFM made from Fe3O4 NPs has the highest adsorption capacity (qt) with the adsorption amount of Cd2+ ions reaching about 29.3 mg/g within only 2 min due to the high specific surface area of NPs. Models of pseudo-first-order, pseudo-second-order and intraparticle diffusion were used to study the kinetics of Cd2+ ions removal process, and a high correlation coefficient (R2) of 0.99 was obtained when pseudo-second-order model was used. It was calculated that the equilibrium rate constant of VFM made from Fe3O4 NPs has reached about 0.28 g mg-1 min-1, much smaller than those of other membranes, which indicated a high Cd2+ ions removal efficiency.


Subject(s)
Cadmium/analysis , Ceramics/chemistry , Ferrosoferric Oxide/chemistry , Filtration/methods , Nanocomposites/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Diffusion , Membranes, Artificial , Models, Theoretical , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...