Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Neuroinflammation ; 21(1): 197, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113081

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. The evidence suggests that the regulation of long noncoding RNAs (lncRNAs) that is mediated by transcription factors (TFs) plays a key role in the pathophysiology of MG. Nevertheless, the detailed molecular mechanisms of lncRNAs in MG remain largely undetermined. METHODS: Using microarray analysis, we analyzed the lncRNA levels in MG. By bioinformatics analysis, LINC01566 was found to potentially play an important role in MG. First, qRT‒PCR was performed to verify the LINC1566 expressions in MG patients. Then, fluorescence in situ hybridization was conducted to determine the localization of LINC01566 in CD4 + T cells. Finally, the impact of LINC01566 knockdown or overexpression on CD4 + T-cell function was also analyzed using flow cytometry and CCK-8 assay. A dual-luciferase reporter assay was used to validate the binding of the TF FOSL1 to the LINC01566 promoter. RESULTS: Based on the lncRNA microarray and differential expression analyses, we identified 563 differentially expressed (DE) lncRNAs, 450 DE mRNAs and 19 DE TFs in MG. We then constructed a lncRNA-TF-mRNA network. Through network analysis, we found that LINC01566 may play a crucial role in MG by regulating T-cell-related pathways. Further experiments indicated that LINC01566 is expressed at low levels in MG patients. Functionally, LINC01566 is primarily distributed in the nucleus and can facilitate CD4 + T-cell apoptosis and inhibit cell proliferation. Mechanistically, we hypothesized that LINC01566 may negatively regulate the expressions of DUSP3, CCR2, FADD, SIRPB1, LGALS3 and SIRPB1, which are involved in the T-cell activation pathway, to further influence the cellular proliferation and apoptosis in MG. Moreover, we found that the effect of LINC01566 on CD4 + T cells in MG was mediated by the TF FOSL1, and in vitro experiments indicated that FOSL1 can bind to the promoter region of LINC01566. CONCLUSIONS: In summary, our research revealed the protective roles of LINC01566 in clinical samples and cellular experiments, illustrating the potential roles and mechanism by which FOSL1/LINC01566 negatively regulates CD4 + T-cell activation in MG.


Subject(s)
CD4-Positive T-Lymphocytes , Lymphocyte Activation , Myasthenia Gravis , Proto-Oncogene Proteins c-fos , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Myasthenia Gravis/metabolism , Myasthenia Gravis/immunology , Myasthenia Gravis/genetics , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Proto-Oncogene Proteins c-fos/metabolism , Female , Male , Middle Aged , Adult
2.
Sci Rep ; 14(1): 13298, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858401

ABSTRACT

Herein, we aimed to identify blood biomarkers that compensate for the poor specificity of D-dimer in the diagnosis of deep vein thrombosis (DVT). S100A8 was identified by conducting protein microarray analysis of blood samples from patients with and without DVT. We used ELISA to detect S100A8, VCAM-1, and ICAM-1 expression levels in human blood and evaluated their correlations. Additionally, we employed human recombinant protein S100A8 to induce human umbilical vein endothelial cells and examined the role of the TLR4/MAPK/VCAM-1 and ICAM-1 signaling axes in the pathogenic mechanism of S100A8. Simultaneously, we constructed a rat model of thrombosis induced by inferior vena cava stenosis and detected levels of S100A8, VCAM-1, and ICAM-1 in the blood of DVT rats using ELISA. The associations of thrombus tissue, neutrophils, and CD68-positive cells with S100A8 and p38MAPK, TLR4, and VCAM-1 expression levels in vein walls were explored. The results revealed that blood S100A8 was significantly upregulated during the acute phase of DVT and activated p38MAPK expression by combining with TLR4 to enhance the expression and secretion of VCAM-1 and ICAM-1, thereby affecting the occurrence and development of DVT. Therefore, S100A8 could be a potential biomarker for early diagnosis and screening of DVT.


Subject(s)
Biomarkers , Calgranulin A , Intercellular Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1 , Venous Thrombosis , Venous Thrombosis/diagnosis , Venous Thrombosis/metabolism , Venous Thrombosis/blood , Humans , Calgranulin A/blood , Calgranulin A/metabolism , Biomarkers/blood , Animals , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/metabolism , Male , Rats , Human Umbilical Vein Endothelial Cells/metabolism , Middle Aged , Female , Toll-Like Receptor 4/metabolism , Signal Transduction , Disease Models, Animal , Adult , p38 Mitogen-Activated Protein Kinases/metabolism
3.
ACS Sens ; 9(5): 2622-2633, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38700898

ABSTRACT

Early diagnosis of drug-induced kidney injury (DIKI) is essential for clinical treatment and intervention. However, developing a reliable method to trace kidney injury origins through retrospective studies remains a challenge. In this study, we designed ordered fried-bun-shaped Au nanocone arrays (FBS NCAs) to create microarray chips as a surface-enhanced Raman scattering (SERS) analysis platform. Subsequently, the principal component analysis (PCA)-two-layer nearest neighbor (TLNN) model was constructed to identify and analyze the SERS spectra of exosomes from renal injury induced by cisplatin and gentamycin. The established PCA-TLNN model successfully differentiated the SERS spectra of exosomes from renal injury at different stages and causes, capturing the most significant spectral features for distinguishing these variations. For the SERS spectra of exosomes from renal injury at different induction times, the accuracy of PCA-TLNN reached 97.8% (cisplatin) and 93.3% (gentamicin). For the SERS spectra of exosomes from renal injury caused by different agents, the accuracy of PCA-TLNN reached 100% (7 days) and 96.7% (14 days). This study demonstrates that the combination of label-free exosome SERS and machine learning could serve as an innovative strategy for medical diagnosis and therapeutic intervention.


Subject(s)
Cisplatin , Gold , Machine Learning , Principal Component Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Animals , Gold/chemistry , Exosomes/chemistry , Gentamicins/analysis , Metal Nanoparticles/chemistry
4.
Anal Bioanal Chem ; 416(16): 3775-3783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702449

ABSTRACT

Oblique incidence reflectance difference (OIRD) is an emerging technique enabling real-time and label-free detection of bio-affinity binding events on microarrays. The interfacial architecture of the microarray chip is critical to the performance of OIRD detection. In this work, a sensitive label-free OIRD microarray chip was developed by using gold nanoparticle-decorated fluorine-doped tin oxide (AuNPs-FTO) slides as a chip substrate. This AuNPs-FTO chip demonstrates a higher signal-to-noise ratio and improved sensitivity compared to that built on FTO glass, showing a detection limit of as low as 10 ng mL-1 for the model target, HRP-conjugated streptavidin. On-chip ELISA experiments and optical calculations suggest that the enhanced performance is not only due to the higher probe density enabling a high capture efficiency toward the target, but most importantly, the AuNP layer arouses optical interference to improve the intrinsic sensitivity of OIRD. This work provides an effective strategy for constructing OIRD-based microarray chips with enhanced sensitivity, and may help extend their practical applications in various fields.


Subject(s)
Fluorine , Gold , Limit of Detection , Metal Nanoparticles , Tin Compounds , Tin Compounds/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Fluorine/chemistry , Microarray Analysis/methods , Enzyme-Linked Immunosorbent Assay/methods
5.
Micromachines (Basel) ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542663

ABSTRACT

In addressing the detection of drug resistance in Helicobacter pylori, we have successfully developed an efficient and highly accurate detection methodology. Initially, we designed and fabricated a microarray chip, which underwent finite element analysis for its optical and thermal characteristics. Ultimately, COC material was chosen as the processing material for the chip, ensuring superior performance. Subsequently, we established a comprehensive detection system and validated its performance. Following that, comparative experiments were conducted for detecting drug resistance in H. pylori. The experimental results indicate that our established methodology aligns with the results obtained using the E-test detection kit, achieving a concordance rate of 100%. In comparison to the E-test detection kit, our methodology reduces the detection time to 1.5 h and provides a more extensive coverage of detection sites.

6.
Food Chem ; 442: 138384, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219567

ABSTRACT

A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 âˆ¼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 âˆ¼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Ochratoxins , Zinc Oxide , Silicon , Edible Grain/chemistry , Porosity , Zinc , Limit of Detection , Aptamers, Nucleotide/genetics , Ochratoxins/analysis , Silicon Dioxide , Organic Chemicals , Biosensing Techniques/methods
7.
Biomedicines ; 11(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37760950

ABSTRACT

Ovarian cancer is the second most fatal gynecological cancer. Early detection, which could be achieved through widespread screening, has not yet had an impact on mortality. The aim of our pilot study was to investigate the expression of miRNAs analyzed by a human miRNA microarray chip in urine and serum of patients with ovarian cancer. We analyzed three serum and three urine samples from healthy donors and five serum and five urine samples from patients with ovarian cancer taken at first diagnosis, before any treatment. We selected the seven miRNAs with the highest expression fold change in the microarray chip (cancer vs. control) in urine and serum, for validation by qPCR. We were able to validate two of the seven miRNAs in serum. In contrast to these findings, we were able to validate all of the top seven miRNAs identified in urine using qPCR. The top seven miRNAs in urine identified by microarray chip showed significantly greater differences in expression between patients with ovarian cancer and healthy donors compared to serum. Based on our finding, we can suggest that urine as a biomaterial is more suitable than serum for miRNA profiling by microarray chip in the search for new biomarkers in ovarian cancer.

8.
Food Chem (Oxf) ; 7: 100180, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37664158

ABSTRACT

Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (TC line, TD line, TP line, or TB line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.

9.
Front Cell Infect Microbiol ; 13: 1183078, 2023.
Article in English | MEDLINE | ID: mdl-37457951

ABSTRACT

Introduction: The clinical practicability of DNA microarray chip in detecting the presence of mycobacterial species/isolates directly in the skin tissues has not been evaluated, nor the efficacy of DNA microarray chip as a novel diagnostic tool for the early diagnosis of cutaneous mycobacterial infections is known. Methods: The present study analyzed the incidence of cutaneous mycobacterial infections in Shanghai and explored the efficacy of a novel DNA microarray chip assay for the clinical diagnosis of the disease from skin tissue specimens compared to traditional detection methods. A total of 60 participants fulfilling the defined diagnostic criteria and confirmed positive for cutaneous mycobacterial infections from 2019 to 2021 were enrolled in the study. Subsequent to recording the participants' medical history and clinical characteristics, the skin tissue specimens were collected for analyses. The specimens underwent histopathological analyses, skin tissue culture, and DNA microarray chip assay. Results: Increased incidence of cutaneous mycobacterial infection was detected from 2019 to 2021. The most common infecting pathogen was M. marinum followed by M. abscessus. The sensitivity, specificity and accuracy of the skin tissue culture method were 70%, 100% and 76.62%, respectively, while that of the DNA microarray chip assay were 91.67%, 100% and 93.51%, respectively. The sensitivity and accuracy of the DNA microarray chip assay were significantly higher than those of the skin tissue culture method. The positive likelihood and diagnostic odds ratio were >10 and >1, respectively for both the methods. The negative likelihood ratio was significantly higher (30% vs 8.33%) and the Youden's index was significantly lower (70.00% vs 91.67%) in the skin culture method compared to that of the DNA microarray chip assay. There was a significant association of false negative results with a history of antibiotic use in the skin tissue culture method. Discussion: Given the increasing incidence of cutaneous mycobacterial infections, early diagnosis remains a prime clinical focus. The DNA microarray chip assay provides a simple, rapid, high-throughput, and reliable method for the diagnosis of cutaneous mycobacterial infections with potential for clinical application.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium Infections , Mycobacterium , Skin Diseases, Bacterial , Humans , Oligonucleotide Array Sequence Analysis , China , Mycobacterium Infections/microbiology , Mycobacterium/genetics , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/microbiology , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/genetics
10.
Mol Cytogenet ; 15(1): 2, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35164824

ABSTRACT

BACKGROUND: A male individual with a karyotype of 46,XX is very rare. We explored the genetic aetiology of an infertility male with a kayrotype of 46,XX and SRY negative. METHODS: The peripheral blood sample was collected from the patient and subjected to a few genetic testing, including chromosomal karyotyping, azoospermia factor (AZF) deletion, short tandem repeat (STR) analysis for AMELX, AMELY and SRY, fluorescence in situ hybridization (FISH) with specific probes for CSP 18/CSP X/CSP Y/SRY, chromosomal microarray analysis (CMA) for genomic copy number variations(CNVs), whole-genome analysis(WGA) for genomic SNV&InDel mutation, and X chromosome inactivation (XCI) analysis. RESULTS: The patient had a karyotype of 46,XX. AZF analysis showed that he missed the AZF region (including a, b and c) and SRY gene. STR assay revealed he possessed the AMELX in the X chromosome, but he had no the AMELY and SRY in the Y chromosome. FISH analysis with CSP X/CSP Y/SRY showed only two X centromeric signals, but none Y chromosome and SRY. The above results of the karyotype, FISH and STR analysis did not suggest a Y chromosome chimerism existed in the patient's peripheral blood. The result of the CMA indicated a heterozygous deletion with an approximate size of 867 kb in Xq27.1 (hg19: chrX: 138,612,879-139,480,163 bp), located at 104 kb downstream of SOX3 gene, including F9, CXorf66, MCF2 and ATP11C. WGA also displayed the above deletion fragment but did not present known pathogenic or likely pathogenic SNV&InDel mutation responsible for sex determination and development. XCI assay showed that he had about 75% of the X chromosome inactivated. CONCLUSIONS: Although the pathogenicity of 46,XX male patients with SRY negative remains unclear, SOX3 expression of the acquired function may be associated with partial testis differentiation of these patients. Therefore, the CNVs analysis of the SOX3 gene and its regulatory region should be performed routinely for these patients.

11.
Cell Surf ; 8: 100074, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35097244

ABSTRACT

Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.

12.
Micromachines (Basel) ; 12(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206209

ABSTRACT

Deoxyribonucleic acid (DNA) sequencing technology provides important data for the disclosure of genetic information and plays an important role in gene diagnosis and gene therapy. Conventional sequencing devices are expensive and require large and bulky optical structures and additional fluorescent labeling steps. Sequencing equipment based on a semiconductor chip has the advantages of fast sequencing speed, low cost and small size. The detection of DNA base pairing is the most important step in gene sequencing. In this study, a large-scale ion-sensitive field-effect transistor (ISFET) array chip with more than 13 million sensitive units is successfully designed for detecting the DNA base pairing. DNA base pairing is successfully detected by the sensor system, which includes the ISFET microarray chip, microfluidic system, and test platform. The chip achieves a high resolution of at least 0.5 mV, thus enabling the recognition of the change of 0.01 pH value. This complementary metal-oxide semiconductor (CMOS) compatible and cost-efficient sensor array chip, together with other specially designed components, can form a complete DNA sequencing system with potential application in the molecular biology fields.

13.
Heliyon ; 7(3): e06387, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33688584

ABSTRACT

Contributing to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clinical treatment, a drug library encompassing approximately 3,142 clinical-stage or FDA-approved small molecules is profiled to identify the candidate therapeutic inhibitors targeting nucleocapsid protein (N) and spike protein (S) of SARS-CoV-2. 16 screened candidates with higher binding affinity are evaluated via virtual screening. Comparing to those under trial/temporarily used antivirus drugs (i.e., umifenovir, lopinavir), ceftriaxone, cefotaxime, and cefuroxime show higher binding affinities to the N-terminal domain of N protein (N-NTD), C-terminal domain of N protein (N-CTD), and receptor-binding domain of S protein (S-RBD). Cefotaxime and cefuroxime have high binding affinities towards S-RBD with angiotensin-converting enzyme 2 (ACE2) complex via influence the critical interface sites at the interface of S-RBD (Arg403, Tyr453, Trp495, Gly496, Phe497, Asn501and Tyr505) and ACE2 (Asn33, His34, Glu37, Asp38, Lys353, Ala386, Ala387, Gln388, Pro389, Phe390 and Arg393) complex.

14.
Biology (Basel) ; 11(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35053002

ABSTRACT

PURPOSE: The aim of this study was to develop a rapid and automatic drug screening platform using microcrater-arrayed (µCA) cell chips. METHODS: The µCA chip was fabricated using a laser direct writing technique. The fabrication time required for one 9 × 9 microarray wax chip was as quick as 1 min. On a nanodroplet handling platform, the chip was pre-coated with anti-cancer drugs, including cyclophosphamide, cisplatin, doxorubicin, oncovin, etoposide, and 5-fluorouracil, and their associated mixtures. Cell droplets containing 100 SK-N-DZ or MCF-7 cells were then loaded onto the chip. Cell viability was examined directly through a chemiluminescence assay on the chip using the CellTiter-Glo assay. RESULTS: The time needed for the drug screening assay was demonstrated to be less than 30 s for a total of 81 tests. The prediction of optimal drug synergy from the µCA chip was found by matching it to that of the zebrafish MCF-7 tumor xenograft model, instead of the conventional 96-well plate assay. In addition, the critical reagent volume and cell number for each µCA chip test were 200 nL and 100 cells, respectively, which were significantly lower than 100 µL and 4000 cells, which were achieved using the 96-well assay. CONCLUSION: Our study for the µCA chip platform could improve the high-throughput drug synergy screening targeting the applications of tumor cell biology.

15.
Exp Ther Med ; 19(4): 2799-2803, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32256763

ABSTRACT

Developmental dysplasia of the hip (DDH), previously known as congenital hip dislocation, is a frequently disabling condition characterized by premature arthritis later in life. Genetic factors play a key role in the aetiology of DDH. In the present study, a genome-wide linkage scan with the Affymetrix 10K GeneChip was performed on a four-generation Chinese family, which included 19 healthy members and 5 patients. Parametric and non-parametric multipoint linkage analyses were carried out with Genespring GT v.2.0 software, and the logarithm of odds (LOD) score and nonparametric linkage (NPL) score were calculated. Parametric linkage analysis was performed, assuming an autosomal recessive trait with full penetrance and Affymetrix 'Asian' allele frequencies. The strongest evidence for linkage was found on chromosome 8q23-24, with a peak LOD score of 2.658 (θ=0), covering 2.377 Mb from single nucleotide polymorphisms (SNPs) rs724717 to rs720132. This interval included nine additional successive SNPs: rs1566071, rs1902121, rs756404, rs702768, rs777813, rs2033995, rs147959, rs2884367 and rs1898287. The same region also yielded the highest NPL score of 2.883 (P=0.0156) from the non-parametric multipoint linkage analysis. Additionally, the second highest NPL score of 2.727 (P=0.0156) and LOD score of 2.528 (θ=0) were obtained on chromosome 12p12 for three consecutive markers (rs1919980, rs763853 and rs725124). This region overlapped a narrow distance of 0.642 Mb. Notably, in addition to these two regions; no significant linkage was identified for other chromosomal regions (with LOD and NPL scores >2.0). For the first time, at least for this pedigree, the evidence in the present study showed that DDH is mapped to two novel regions at 8q23-q24 and 12p12.

16.
Gene ; 738: 144475, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32081697

ABSTRACT

INTRODUCTION: In this article, we utilized Ingenuity® Pathway Analysis (IPA®) bioinformatics analysis software and Metascape® bioinformatics analysis website tools to analyse the possible mechanism of ERH affecting tumourigenesis (proliferation and apoptosis) in bladder cancer (BC) T24 cells. METHODS: The ERH gene was knocked down, and BC T24 cells were divided into ERH normal and knockdown groups. Affymetrix® gene expression microarrays were performed to obtain a differentially expressed gene list (DEGL) between the 2 groups. IPA® data analyses contain five modules: disease and function analysis, upstream analysis, regulator effects analysis, canonical pathway analysis and molecular network analysis. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were analysed by Metascape®. RESULTS: The results of the gene expression profiling chip and the DEGL showed that 344 genes were upregulated and 254 genes were downregulated. The IPA® and Metascape® pathway analyses showed that the ERH gene may affect proliferation and apoptosis by affecting the apoptosis, cell cycle, Toll-like receptor (TLR), NF-κB or TGF-beta signalling pathways. Upstream analysis determined that the ERH gene may regulate TNF and NK-κB in the BC T24 cell lines. The ERH gene may be involved in the "cell death and survival" molecular network in BC T24 cells. ERH may be a regulator of KITLG through TNF. CONCLUSIONS: The ERH gene may affect apoptosis through the TLR, NF-κB, TNF or TGF-beta signalling pathways in BC T24 cells, and may be a regulator of KITLG to ultimately activate the growth of malignant tumours.


Subject(s)
Cell Cycle Proteins/genetics , Transcription Factors/genetics , Urinary Bladder Neoplasms/genetics , Apoptosis/genetics , Carcinogenesis/genetics , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Division , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Computational Biology/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques/methods , Gene Ontology , Humans , Oligonucleotide Array Sequence Analysis , Software , Transcription Factors/metabolism , Urinary Bladder/metabolism
17.
Curr Protoc Toxicol ; 79(1): e66, 2019 02.
Article in English | MEDLINE | ID: mdl-30387930

ABSTRACT

High-content imaging (HCI) assays on two-dimensional (2D) cell cultures often do not represent in vivo characteristics accurately, thus reducing the predictability of drug toxicity/efficacy in vivo. On the other hand, conventional 3D cell cultures are relatively low throughput and possess difficulty in cell imaging. To address these limitations, a miniaturized 3D cell culture has been developed on a micropillar/microwell chip platform with human cells encapsulated in biomimetic hydrogels. Model compounds are used to validate human cell microarrays for high-throughput assessment of mechanistic toxicity. Main mechanisms of toxicity of compounds can be investigated by analyzing multiple parameters such as DNA damage, mitochondrial impairment, intracellular glutathione level, and cell membrane integrity. IC50 values of these parameters can be determined and compared for the compounds to investigate the main mechanism of toxicity. This paper describes miniaturized HCI assays on 3D-cultured cell microarrays for high-throughput assessment of mechanistic profiles of compound-induced toxicity. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Cell Culture Techniques/methods , High-Throughput Screening Assays/methods , Imaging, Three-Dimensional , Microfluidic Analytical Techniques , Pharmaceutical Preparations/chemistry , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/instrumentation , Humans , Hydrogels , Toxicity Tests
18.
Talanta ; 184: 499-506, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29674074

ABSTRACT

The development of a fluorescent multiplexed microarray platform able to detect and quantify a wide variety of pollutants in seawater is reported. The microarray platform has been manufactured by spotting 6 different bioconjugate competitors and it uses a cocktail of 6 monoclonal or polyclonal antibodies raised against important families of chemical pollutants such as triazine biocide (i.e. Irgarol 1051®), sulfonamide and chloramphenicol antibiotics, polybrominated diphenyl ether flame-retardant (PBDE, i.e. BDE-47), hormone (17ß-estradiol), and algae toxin (domoic acid). These contaminants were selected as model analytes, however, the platform developed has the potential to detect a broader group of compounds based on the cross-reactivity of the immunoreagents used. The microarray chip is able to simultaneously determine these families of contaminants directly in seawater samples reaching limits of detection close to the levels found in contaminated areas (Irgarol 1051®, 0.19 ±â€¯0,06 µg L-1; sulfapyridine, 0.17 ±â€¯0.07 µg L-1; chloramphenicol, 0.11 ±â€¯0.03 µg L-1; BDE-47, 2.71 ±â€¯1.13 µg L-1; 17ß-estradiol, 0.94 ±â€¯0.30 µg L-1 and domoic acid, 1.71 ±â€¯0.30 µg L-1). Performance of the multiplexed microarray chip was assessed by measuring 38 blind spiked seawater samples containing either one of these contaminants or mixtures of them. The accuracy found was very good and the coefficient of variation was < 20% in all the cases. No sample pre-treatment was necessary, and the results could be obtained in just 1 h 30 min. The microarray shows high sample throughput capabilities, being able to measure simultaneously more than 68 samples and screen them for a significant number of chemical contaminants of interest in environmental screening programs.

19.
Toxicol In Vitro ; 50: 147-159, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29501531

ABSTRACT

The majority of high-content imaging (HCI) assays have been performed on two-dimensional (2D) cell monolayers for its convenience and throughput. However, 2D-cultured cell models often do not represent the in vivo characteristics accurately and therefore reduce the predictability of drug toxicity/efficacy in vivo. Recently, three-dimensional (3D) cell-based HCI assays have been demonstrated to improve predictability, but its use is limited due to difficulty in maneuverability and low throughput in cell imaging. To alleviate these issues, we have developed miniaturized 3D cell culture on a micropillar/microwell chip and demonstrated high-throughput HCI assays for mechanistic toxicity. Briefly, Hep3B human hepatoma cell line was encapsulated in a mixture of alginate and fibrin gel on the micropillar chip, cultured in 3D, and exposed to six model compounds in the microwell chip for rapidly assessing mechanistic hepatotoxicity. Several toxicity parameters, including DNA damage, mitochondrial impairment, intracellular glutathione level, and cell membrane integrity were measured on the chip, and the IC50 values of the compounds at different readouts were determined to investigate the mechanism of toxicity. Overall, the Z' factors were between 0.6 and 0.8 for the HCI assays, and the coefficient of variation (CV) were below 20%. These results indicate high robustness and reproducibility of the HCI assays established on the miniaturized 3D cell culture chip. In addition, it was possible to determine the predominant mechanism of toxicity using the 3D HCI assays. Therefore, our miniaturized 3D cell culture coupled with HCI assays has great potential for high-throughput screening (HTS) of compounds and mechanistic toxicity profiling.


Subject(s)
Cell Culture Techniques , High-Throughput Screening Assays , Toxicity Tests/methods , Cell Line, Tumor , Cell Membrane/drug effects , DNA Damage , Drug-Related Side Effects and Adverse Reactions , Glutathione/metabolism , Humans , Microscopy, Fluorescence , Mitochondria/drug effects , Printing, Three-Dimensional , Spheroids, Cellular
20.
ACS Appl Mater Interfaces ; 10(10): 8485-8495, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29464946

ABSTRACT

We employ model organism Caenorhabditis elegans to effectively study the toxicology of anatase and rutile phase titanium dioxide (TiO2) nanoparticles (NPs). The experimental results show that nematode C. elegans can take up fluorescein isothiocyanate-labeled TiO2 NPs and that both anatase and rutile TiO2 NPs can be detected in the cytoplasm of cultured primary neurons imaged by transmission electron microscopy. After TiO2 NP exposure, these neurons also grow shorter axons, which may be related to the detected impeded worm locomotion behavior. Furthermore, anatase TiO2 NPs did not affect the worm's body length; however, we determined that a concentration of 500 µg/mL of anatase TiO2 NPs reduced the worm population by 50% within 72 h. Notably, rutile TiO2 NPs negatively affect both the body size and worm population. Worms unable to enter the L4 larval stage explain a severe reduction in the worm population at TiO2 NPs LC50/3d. To obtain a better understanding of the cellular mechanisms involved in TiO2 NP intoxication, DNA microarray assays were employed to determine changes in gene expression in the presence or absence of TiO2 NP exposure. Our data reveal that three genes (with significant changes in expression levels) were related to metal binding or metal detoxification (mtl-2, C45B2.2, and nhr-247), six genes were involved in fertility and reproduction (mtl-2, F26F2.3, ZK970.7, clec-70, K08C9.7, and C38C3.7), four genes were involved in worm growth and body morphogenesis (mtl-2, F26F2.3, C38C3.7, and nhr-247), and five genes were involved in neuronal function (C41G6.13, C45B2.2, srr-6, K08C9.7, and C38C3.7).


Subject(s)
Metal Nanoparticles , Animals , Caenorhabditis elegans , Locomotion , Neurons , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL