Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004689

ABSTRACT

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Subject(s)
Antioxidants , Bacterial Proteins , Corynebacterium glutamicum , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sigma Factor , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Antioxidants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Reactive Oxygen Species/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics
2.
Angew Chem Int Ed Engl ; : e202406078, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994912

ABSTRACT

Delocalized organic π-radicals are intrinsically amphoteric redox systems; however, achieving their multistage redox capability presents a challenge. In addition, their instability often hampers their synthesis, isolation, and characterization. Herein, we report the synthesis of a stable π-extended nanographene π-radical (NR1) and its isolation in the crystalline form. NR1 exhibits an unusual four-stage amphoteric redox behavior, as revealed by cyclic voltammetry measurements. The stable charged species, including a cation and a radical dication, are characterized using spectroscopic methods. This study demonstrates that π-extension could serve as a viable approach to unlock the multistage redox ability of delocalized organic radicals.

3.
Redox Biol ; 75: 103248, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38917671

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.

4.
Toxins (Basel) ; 16(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38787078

ABSTRACT

The effects of combined short-term (3 days) exposure to Fusarium mycotoxins at both the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON/3-AcDON/15-AcDON: 5 mg/kg; FB1: 20 mg/kg) and twice the dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg/kg, and FB1: 40 mg/kg feed) on the kidneys of laying hens were examined. Our study aimed to investigate how these mycotoxins interacted with membrane lipid fatty acid (FA) composition and lipid peroxidation processes. It was observed that the levels of conjugated dienes and trienes were higher than the control in the low-mix group on day 3, and malondialdehyde concentration was higher on days 2 and 3. The proportion of phospholipid (PL) FAs showed that saturated and monounsaturated FAs increased. Still, both n3 and n6 polyunsaturated FAs decreased significantly on day 2 of exposure in the high-mix group. Among the n3 FAs, the level of docosahexaenoic (C22:6 n3) and among n6 FAs, arachidonic (C20:4 n6) acids decreased mainly on day 2 in the high-mix group. The results suggest that the combined exposure to Fusarium mycotoxins induced lipid peroxidation in the kidneys of laying hens, which resulted in marked changes in the PL FA profile. Histological examination revealed time- and dose-dependent increases as consequences of mycotoxin exposure.


Subject(s)
Chickens , Fatty Acids , Fusarium , Kidney , Lipid Peroxidation , Mycotoxins , Phospholipids , Animals , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Fusarium/metabolism , Female , Fatty Acids/metabolism , Phospholipids/metabolism , Mycotoxins/toxicity , Antioxidants/metabolism , Animal Feed/analysis
5.
Int Immunopharmacol ; 131: 111789, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38484668

ABSTRACT

Physalin H (PH), a withanolide isolated from Physalisangulata L. has been reported to have anti-inflammatory effect. However, its impact on acute lung injury (ALI) remains unexplored. In this study, we observed that PH significantly alleviated inflammation in LPS-stimulated macrophages by suppressing the release of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and down-regulating the expression of the inflammation-related genes. RNA sequencing analysis revealed a significant up-regulation of the NRF2 pathway by PH. Further investigation elucidated that PH attenuated the ubiquitination of NRF2 by impeding the interaction between NRF2 and KEAP1, thereby facilitating NRF2 nuclear translocation and up-regulating the expression of target genes. Consequently, it regulated redox system and exerted anti-inflammatory effect. Consistently, PH also significantly alleviated pathological damage and inflammation in LPS-induced ALI mice model, which could be reversed by administration of an NRF2 inhibitor. Collectively, these results suggest that PH ameliorates ALI by activating the KEAP1/NRF2 pathway. These findings provide a foundation for further development of pH as a new anti-inflammatory agent for ALI therapy.


Subject(s)
Acute Lung Injury , NF-E2-Related Factor 2 , Secosteroids , Mice , Animals , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Kelch-Like ECH-Associated Protein 1/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Lung/pathology
6.
Environ Pollut ; 350: 123724, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38462197

ABSTRACT

Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 µg L-1), MP (1 mg L-1, 2 µm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.


Subject(s)
Microplastics , Pyrans , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Pyrans/toxicity , Microplastics/toxicity , Bivalvia/drug effects , Oxidative Stress/drug effects , Rivers/chemistry , Glutathione/metabolism , Zinc/toxicity , Oxidation-Reduction , Apoptosis/drug effects , Polyether Polyketides
7.
Heliyon ; 10(3): e25083, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317971

ABSTRACT

Cytochrome P450 monooxygenases perform a multitude of roles, including the generation of hydroxylated aromatic compounds that might be utilized by microorganisms for their survival. WGS data of Amycolatopsis magusensis KCCM40447 revealed a complete circular genome of 9,099,986 base pairs and functionally assigned 8601 protein-encoding genes. Genomic analysis confirmed that the gene for 4-methoxybenzoate monoxygenase (CYP199A35) was conserved in close proximity to the gene for 4-hydroxybenzoate transporter (PcaK). The co-localized genes encoding CYP199A35, and ferredoxin-NAD(P) reductase (Mbr) represent a two-component system for electron transfer. CYP199A35 was specific for O-demethylation of para O-methyl substituted benzoic acid derivatives, 4-methoxybenzoate (4 MB), and 4-methoxycinnamic acid (4MCA) using the native redox partner (Mbr); two-component system and non-physiological redox partners (Pdr/Pdx); three-component system. The catalytic efficiency for O-demethylation of 4 MB using Mbr and Pdr/Pdx was 0.02 ± 0.006 min-1 µM-1 and 0.07 ± 0.02 min-1 µM-1 respectively. Further, sequence annotation and function prediction by RAST and KEEG analysis revealed a complete catabolic pathway for the utilization of 4 MB by strain KCCM40447, which was also proved experimentally.

8.
Toxicol Lett ; 391: 55-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092155

ABSTRACT

This study investigates gene expression changes in laying hens exposed to trichothecene mycotoxins, known to induce oxidative stress and affect xenobiotic transformation and antioxidants. A 3-day feeding trial tested low and high doses of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 in hen feed. Results showed increased expression of AHR, AHRR, HSP90, and CYP1A2 genes on days 2 and 3, suggesting a response to mycotoxin exposure. High doses down-regulated CYP1A2, AHR, and AHRR on day 1. KEAP1 expression decreased on day 1 but increased dose-dependently on days 2 and 3. NRF2 was up-regulated by low and down-regulated by high doses on day 1, then increased on days 2 and 3. Antioxidant-related genes (GPX3, GPX4, GSS, GSR) showed dose-dependent responses. Low doses up-regulated GPX3 and GPX4 throughout, while high doses up-regulated GPX3 on days 2 and 3 and GPX4 on day 3. GSS was up-regulated on day 3. Results indicate that toxic metabolites formed by phase I biotransformation rapidly induce ROS formation at low doses through the AHR/Hsp90/CYP1A2 pathway at the gene expression level, but at high levels, ROS-induced oxidative stress manifests later. Study showed simultaneous activation of redox-sensitive pathways: aryl hydrocarbon receptor (Ahr) and nuclear factor erythroid-derived 2-like 2 (Nrf2) by multi-mycotoxin exposure.


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin , Female , Animals , Mycotoxins/toxicity , Fusarium/metabolism , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Chickens , Cytochrome P-450 CYP1A2/metabolism , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Antioxidants/metabolism , Liver/metabolism , T-2 Toxin/toxicity , T-2 Toxin/metabolism
9.
J Nutr Biochem ; 124: 109497, 2024 02.
Article in English | MEDLINE | ID: mdl-37875228

ABSTRACT

Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Omega-3 , Multiple Sclerosis , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Multiple Sclerosis/drug therapy , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Models, Theoretical
10.
Life Sci ; 337: 122353, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38104862

ABSTRACT

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS: C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS: Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE: In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.


Subject(s)
Alkaloids , Neuroprotective Agents , Sepsis-Associated Encephalopathy , Male , Mice , Animals , Sepsis-Associated Encephalopathy/complications , Catalase , Matrix Metalloproteinase 9 , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Thiobarbituric Acid Reactive Substances , Brain-Derived Neurotrophic Factor , Interleukin-6 , Mice, Inbred C57BL , Alkaloids/pharmacology , Alkaloids/therapeutic use
11.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37760004

ABSTRACT

Geranylgeranylacetone (GGA) exerts cytoprotective activity against various toxic stressors via the thioredoxin (TRX) redox system; however, its effect on skin inflammation and molecular mechanism on inducing the TRX of GGA is still unknown. We investigated the effects of GGA in a murine irritant contact dermatitis (ICD) model induced by croton oil. Both a topical application and oral administration of GGA induced TRX production and Nrf2 activation. GGA ameliorated ear swelling, neutrophil infiltration, and inhibited the expression of TNF-α, IL-1ß, GM-CSF, and 8-OHdG. GGA's cytoprotective effect was stronger orally than topically in mice. In vitro studies also showed that GGA suppressed the expression of NLRP3, TNF-α, IL-1ß, and GM-CSF and scavenged ROS in PAM212 cells after phorbol myristate acetate stimulation. Moreover, GGA induced endogenous TRX production and Nrf2 nuclear translocation in PAM212 cells (dependent on the presence of ROS) and activated the PI3K-Akt signaling pathway. GGA significantly downregulated thioredoxin-interacting protein (TXNIP) levels in PAM212 cells treated with or without Nrf2 siRNA. After knocking down Nrf2 in PAM212 cells, the effect of GGA on TRX induction was significantly inhibited. This suggests that GGA suppress ICD by inducing endogenous TRX, which may be regulated by PI3K/Akt/Nrf2 mediation of the TRX redox system.

12.
J Econ Entomol ; 116(5): 1820-1829, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37651100

ABSTRACT

Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) has developed extensive resistance to the fumigant phosphine. Knowledge of the resistance mechanisms offers insight into resistance management. Although several studies have highlighted the positive or negative impacts of symbiotic microbiota on host pesticide resistance, little is known about the association between gut symbionts and host phosphine resistance. To reveal the effect of the gut bacterium, Enterococcus faecalis (Andrewes & Horder) (Lactobacillales: Enterococcaceae), on host phosphine resistance and its underlying mechanism, we investigated mortality, fitness, redox responses, and immune responses of adult T. castaneum when challenged with E. faecalis inoculation and/or phosphine exposure. When T. castaneum was exposed to phosphine, E. faecalis inoculation decreased its survival and female fecundity and aggravated its oxidative stress. Furthermore, E. faecalis inoculation suppressed the expression and activity of superoxide dismutase, catalase, and peroxidase in phosphine-exposed T. castaneum. Enterococcus faecalis inoculation also triggered excessive host immune responses, including the immune deficiency signaling pathway and the dual oxidase-reactive oxygen species system. These findings suggest that E. faecalis likely modulates host phosphine resistance by interfering with the redox system. This provides information for examining the symbiotic function in the insect-microorganism relationship and new avenues for pesticide resistance management.

13.
Angew Chem Int Ed Engl ; 62(36): e202308467, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37395499

ABSTRACT

This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.

14.
Toxins (Basel) ; 15(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37235340

ABSTRACT

Different mycotoxins in feed lead to combined exposure, increasing adverse effects on animal health. Trichothecene mycotoxins have been associated with inducing oxidative stress, which is neutralized by the glutathione system within the antioxidant defense, depending on the dose and duration of exposure. T-2 toxin, deoxynivalenol (DON), and fumonisin B1 (FB1) are commonly found in feed commodities simultaneously. In the present study, the intracellular biochemical and gene expression changes were investigated in the case of multi-mycotoxin exposure, focusing on certain elements of the glutathione redox system. In a short-term feeding trial, an in vivo study was performed with low (EU-proposed) doses: T-2/HT-2 toxin: 0.25 mg; DON/2-AcDON/15-AcDON.: 5 mg; FB1: 20 mg/kg feed, and high doses (twice the low dose) in laying hens. The multi-mycotoxin exposure affected the glutathione system; GSH concentration and GPx activity was higher in the liver in the low-dose group on day 1 compared to the control. Furthermore, the gene expression of antioxidant enzymes increased significantly on day 1 in both exposure levels compared to the control. The results suggest that when EU-limiting doses are applied, individual mycotoxins may have a synergistic effect in the induction of oxidative stress.


Subject(s)
Fumonisins , Mycotoxins , T-2 Toxin , Animals , Female , T-2 Toxin/toxicity , T-2 Toxin/metabolism , Antioxidants/metabolism , Chickens/metabolism , Fumonisins/toxicity , Fumonisins/metabolism , Mycotoxins/toxicity , Mycotoxins/metabolism , Oxidation-Reduction , Glutathione/metabolism
15.
Antioxidants (Basel) ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37237917

ABSTRACT

Binge drinking is the most frequent consumption pattern among young adults and remarkably changes the central nervous system; thus, research on strategies to protect it is relevant. This study aimed to investigate the detrimental effects of binge-like EtOH intake on the spinal cord of male rats and the potential neuroprotective effects provided by moderate-intensity aerobic physical training. Male Wistar rats were distributed into the 'control group', 'training group', 'EtOH group', and 'training + EtOH'. The physical training protocol consisted of daily 30-min exercise on a treadmill for 5 consecutive days followed by 2 days off during 4 weeks. After the fifth day of each week, distilled water ('control group' and 'training group') or 3 g/kg of EtOH diluted at 20% w/v ('EtOH group' and 'training + EtOH group') was administered for 3 consecutive days through intragastric gavage to simulate compulsive consumption. Spinal cord samples were collected for oxidative biochemistry and morphometric analyses. The binge-like EtOH intake induced oxidative and tissue damage by decreasing reduced glutathione (GSH) levels, increasing lipid peroxidation (LPO), and reducing motor neurons (MN) density in the cervical segment. Even under EtOH exposure, physical training maintained GSH levels, reduced LPO, and prevented MN reduction at the cervical segment. Physical training is a non-pharmacological strategy to neuroprotect the spinal cord against oxidative damage induced by binge-like EtOH intake.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3559-3567, 2023 12.
Article in English | MEDLINE | ID: mdl-37249616

ABSTRACT

Prostate cancer is the second prevalent cancer in men. While the anti-cancer effect of Hesperidin and (Aprepitant) AP on prostate cancer cells is well documented, their combined effect and their mechanism of action are not fully investigated. Therefore, this study aimed to investigate the anti-cancer effects of Hesperidin and AP alone and in combination on prostate cancer cells. PC3 and LNCaP cell lines were treated with Hesperidin and AP alone and in combination. The Resazurin test was used for assessing cell viability. The ROS (reactive oxygen Species) level, P53, P21, Bcl-2, and Survivin gene expression were assessed. Also, a trypan blue assay was done. Hesperidin and AP reduced cell viability and increased apoptosis in PC3 and LNCaP cells. The ROS level reduced after treating the PC3 and LNCaP cells with AP with or without Hesperidin. P53 and P21 gene expression increased after treatment with Hesperidin with or without AP compared to the untreated group in the PC3 cell line. Bcl-2 and Survivin gene expression decreased with AP with or without Hesperidin in the PC3 and LNCaP cells. The current study showed the synergic anti-cancer effect of Hesperidin and AP in both PC3 and LNCaP cell lines.


Subject(s)
Hesperidin , Prostatic Neoplasms , Male , Humans , Hesperidin/pharmacology , Survivin/metabolism , Survivin/pharmacology , Aprepitant/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Oxidation-Reduction
17.
Glob Chang Biol ; 29(9): 2399-2420, 2023 05.
Article in English | MEDLINE | ID: mdl-36911976

ABSTRACT

Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.


Subject(s)
Hot Temperature , Urbanization , Animals , Cities , Temperature , Birds , Climate Change
18.
Stem Cells Transl Med ; 12(3): 169-182, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36917628

ABSTRACT

We introduce a novel approach to determine the critical quality attributes (CQAs) of mesenchymal stem cells (MSCs) expected to exert immunosuppressive effects. MSCs retained homeostatic replication potentials, such as sustainable growth and consistent cell morphology as a population, in early passages, but lost them in late passages. Characteristic surface markers of MSCs (ie, CD73, CD90, and CD105) were no longer expressed at 2 weeks after subcutaneous transplantation into NOG mice when MSCs from late passages were transplanted, but not when MSCs from early passages were transplanted, suggesting that the biological effects of the MSCs differed according to the timing of cell harvesting and highlighting the importance of specifying MSCs that retained homeostatic features to define the CQAs. The homeostatic features of MSCs related to the balance of the redox system, nutrient requirements, and mitochondrial function were also observed until a certain passage. Therefore, we could define the CQAs of MSCs related to manufacturing by selecting process parameters (PPs) underlying the homeostatic features of MSCs and measuring these PPs quantitatively to specify the cell population with homeostatic features by limiting the passage number. The validity of the PPs stipulated in our pilot study was verified using an SKG murine arthritis model, and critical PPs (CPPs) were then selected among the PPs. Thus, CQAs related to manufacturing in the developmental phase could be defined by the CPPs in this manner, and the concept of CQAs could be refined continuously toward commercial manufacturing.


Subject(s)
Mesenchymal Stem Cells , Animals , Mice , Pilot Projects , Cell Differentiation , Cell Proliferation , Cells, Cultured
19.
J Colloid Interface Sci ; 637: 10-19, 2023 May.
Article in English | MEDLINE | ID: mdl-36682114

ABSTRACT

Platinum group metal (PGM)-free catalysts represented by nitrogen and iron co-doped carbon (Fe-N-C) catalysts are desirable and critical for metal-air batteries, but challenges still exist in performance and stability. Here, cerium oxides (CeOx) are incorporated into a two-dimensional Fe-N-C catalyst (FeNC-Ce-950) via a host-guest strategy. The Ce4+/Ce3+ redox system creates a large number of oxygen vacancies for rapid O2 adsorption to accelerate the kinetics of oxygen reduction reaction (ORR). Consequently, the as-synthesized FeNC-Ce-950 catalyst exhibits a half-wave potential (E1/2) of 0.921 V and negligible decay (<2 mV for ΔE1/2) after 5,000 accelerated durability cycles, significantly outperforming most of ORR catalysts reported in recent years and precious metal counterparts. When applied in a zinc-air battery, it demonstrates a peak power density of 175 mW cm-2 and a specific capacity of 757 mAh gZn-1. This study also provides a reference for the exploration of Fe-N-C catalysts decorated with variable valence metal oxides.

20.
Biomed Pharmacother ; 159: 114221, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634589

ABSTRACT

Polysaccharides, a class of naturally occurring carbohydrates, were widely presented in animals, plants, and microorganisms. Recently, health benefits of polysaccharides have attracted much attention due to their unique characteristics in reactive oxygen species (ROS) management. ROS, by-products of aerobic metabolism linked to food consumption, exhibited a dual role in protecting cells and fostering pathogenesis collectively termed double-edged sword. Some interesting studies reported that polysaccharides could behave as prooxidants under certain conditions, besides antioxidant capacities. Potentiation of the bright side of ROS could contribute to the host defense that was vitally important for the polysaccharides acting as biological response modifiers. Correspondingly, disease prevention of polysaccharides linked to the management of ROS production was systematically described and discussed in this review. Furthermore, major challenges and future prospects were presented, aiming to provide new insight into applying polysaccharides as functional food ingredients and medicine.


Subject(s)
Antioxidants , Polysaccharides , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Polysaccharides/pharmacology , Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL
...