Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Cancer Lett ; : 217282, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369768

ABSTRACT

Genetic mutations and epigenetic modifications affecting multiple cancer-related genes occur synergistically to drive tumorigenesis. Across a wide spectrum of cancers, pathogenic changes have been identified in members of the SWItch/Sucrose Non-Fermentable complex including its two catalytic subunits, SMARCA4 and SMARCA2. During cancer development, it is not uncommon to lose the function of either SMARCA4 or SMARCA2, however, loss of both together has been reported to be synthetic lethal and therefore unexpected. Co-deficiency of SMARCA4 and SMARCA2 occurs as a pathognomonic feature of the early-onset ovarian cancer Small-cell carcinoma of the ovary, hypercalcemic type. The loss of both catalytic subunits is also described in other rare undifferentiated neoplasms including Thoracic SMARCA4-deficient undifferentiated tumors, Malignant rhabdoid tumors and dedifferentiated or undifferentiated carcinomas, predominantly of lung, gastrointestinal, and endometrial origin. This review provides the first extensive characterization of cancers with concurrent SMARCA4 and SMARCA2 loss through the discussion of shared clinical and molecular features. Further, we discuss the mechanisms triggering the loss of catalytic activity, the cellular processes that are dysfunctional as a consequence, and finally, current therapeutic candidates which may selectively target these cancers.

2.
FEBS Open Bio ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322625

ABSTRACT

The switch/sucrose non-fermenting (SWI/SNF) complex family includes important chromatin-remodeling factors that are frequently mutated in lung adenocarcinoma (LUAD). However, the role of one family member, SMARCA4, in LUAD prognosis and immunotherapy sensitivity remains unclear. In the present study, 6745 LUAD samples from the cBioPortal database were used to analyze the relationships between SMARCA4 mutations and patient prognoses and clinical characteristics. Additionally, we examined the correlation between SMARCA4 mutations and prognosis in patients treated with immunotherapy using two immune-related datasets. SMARCA4 mutations and low expression were associated with shorter survival, and mutations were associated with a high tumor mutational burden and high microsatellite instability. SMARCA4 mutations were accompanied by KRAS, KEAP1, TP53 and STK11 mutations. No significant difference was observed in the immunotherapy response between patients with and without SMARCA4 mutations. When KRAS or STK11 mutations were present, immunotherapy effectiveness was poorer; however, when both SMARCA4 and TP53 mutations were present, immunotherapy was more effective. Furthermore, low SMARCA4 expression predicted a higher immunophenoscore, and SMARCA4 expression was correlated with certain immune microenvironment features. Taken together, our results suggest that SMARCA4 mutations and low expression might be associated with poor LUAD prognosis. Additionally, immunotherapy efficacy in patients with SMARCA4 mutations depended on the co-mutant genes. Thus, SMARCA4 could be an important factor to be considered for LUAD diagnosis and treatment.

3.
Future Oncol ; : 1-9, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129675

ABSTRACT

The SWI/SNF complex is a chromatin remodeling complex comprised by several proteins such as SMARCA4 or SMARCB1. Mutations in its components can lead to the development of aggressive rhabdoid tumors such as epithelioid sarcoma, malignant rhabdoid tumor or small cell carcinoma of the ovary hypercalcemic type, among others. These malignancies tend to affect young patients and their prognosis is poor given the lack of effective treatments. Characteristically, these tumors are highly infiltrated by TILs, suggesting that some lymphocytes are recognizing tumor antigens. The use of those TILs as a therapeutic strategy is a promising approach worth exploring. Here, we report the clinical protocol of the TILTS study, a Phase II clinical trial assessing personalized adoptive cell therapy with TILs in patients affected by these tumor types.Clinical Trial Registration: 2023-504632-17-00 (www.clinicaltrialsregister.eu) (ClinicalTrials.gov).


[Box: see text].

4.
Pathologica ; 116(3): 163-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38979590

ABSTRACT

The 5th WHO classification of thoracic tumours includes thoracic SMARCA4-deficient undifferentiated tumour (SMARCA4-UT) among the "other epithelial tumours of the lung" chapter. Herein, we present a case of undifferentiated thoracic neoplasm with retention of SMARCA4 expression, lack of NUT fusion protein and loss of SMARCB1/INI1 expression. After presenting the clinical and pathological features of the tumour, we carried out a review of the literature on the same topic. Albeit very rare, we believe this entity should be included in the heterogeneous group of undifferentiated neoplasms of the thorax.


Subject(s)
DNA Helicases , SMARCB1 Protein , Thoracic Neoplasms , Transcription Factors , Humans , SMARCB1 Protein/deficiency , SMARCB1 Protein/genetics , Transcription Factors/genetics , Transcription Factors/deficiency , Thoracic Neoplasms/pathology , Thoracic Neoplasms/genetics , DNA Helicases/deficiency , DNA Helicases/genetics , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Male , Female , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis
5.
Head Neck ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967182

ABSTRACT

BACKGROUND: SWI/SNF complex-deficient sinonasal carcinomas are rare, genetically distinct, and aggressive entities. METHODS: SMARCB1 and SMARCA4 immunohistochemistry was retrospectively performed on a cohort of undifferentiated, poorly differentiated, and poorly defined sinonasal carcinomas. Survival outcomes were compared between SMARCB1/SMARCA4 (SWI/SNF complex)-deficient and -retained groups. RESULTS: Eight SWI/SNF complex-deficient (six SMARCB1-deficient, two SMARCA4-deficient) cases were identified among 47 patients over 12 years. Triple-modality treatment was more frequently utilized in SWI/SNF complex-deficient carcinomas than in SWI/SNF complex-retained carcinomas (71.4% vs. 11.8%, p = 0.001). After a median follow-up of 21.3 (IQR 9.9-56.0) months, SWI/SNF complex-deficient sinonasal carcinomas showed comparable recurrence rates (57.1% vs. 52.9%, p = 0.839), time-to-recurrence (7.3 [IQR 6.6-8.3] vs. 9.1 [IQR 3.9-17.4] months, p = 0.531), and overall survival (17.7 [IQR 11.8-67.0] vs. 21.6 [IQR 8.9-56.0] months, p = 0.835) compared to SWI/SNF complex-retained sinonasal carcinomas. CONCLUSION: Triple-modality treatment may improve survival in SWI/SNF complex-deficient sinonasal carcinomas.

6.
Front Biosci (Landmark Ed) ; 29(7): 262, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39082357

ABSTRACT

BACKGROUND: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear. METHODS: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions. To examine the key factors that mediate the recruitment of SMARCA2/4, the relocation of SMARCA2/4 to DNA lesions was examined in HeLa cells treated with inhibitors of Ataxia-telangiectasia-mutated (ATM), Ataxia telangiectasia and Rad3-related protein (ATR), CREB-binding protein (CBP) and its homologue p300 (p300/CBP), or Poly (ADP-ribose) polymerase (PARP) 1/2 as well as in H2AX-deficient HeLa cells. Moreover, by concomitantly suppressing SMARCA2/4 with the small molecule inhibitor FHD286 or Compound 14, the function of SMARCA2/4 in Radiation sensitive 51 (RAD51) foci formation and homologous recombination repair was examined. Finally, using a colony formation assay, the synergistic effect of PARP inhibitors and SMARCA2/4 inhibitors on the suppression of tumor cell growth was examined. RESULTS: We show that SMARCA2/4 relocate to DNA lesions in response to DNA damage, which requires their ATPase activities. Moreover, these ATPase activities are also required for the relocation of other subunits in the SWI/SNF complex to DNA lesions. Interestingly, the relocation of SMARCA2/4 is independent of γH2AX, ATM, ATR, p300/CBP, or PARP1/2, indicating that it may directly recognize DNA lesions as a DNA damage sensor. Lacking SMARCA2/4 prolongs the retention of γH2AX, Ring Finger Protein 8 (RNF8) and Breast cancer susceptibility gene 1 (BRCA1) at DNA lesions and impairs RAD51-dependent homologous recombination repair. Furthermore, the treatment of an SMARCA2/4 inhibitor sensitizes tumor cells to PARP inhibitor treatment. CONCLUSIONS: This study reveals SMARCA2/4 as a DNA damage repair factor for double-strand break repair.


Subject(s)
DNA Damage , DNA Helicases , DNA Repair , Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Histones/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , BRCA1 Protein/metabolism , BRCA1 Protein/genetics
7.
Front Plant Sci ; 15: 1430467, 2024.
Article in English | MEDLINE | ID: mdl-38988640

ABSTRACT

The switch defective/sucrose non-fermentable (SWI/SNF) multisubunit complex plays an important role in the regulation of gene expression by remodeling chromatin structure. Three SWI/SNF complexes have been identified in Arabidopsis including BAS, SAS, and MAS. Many subunits of these complexes are involved in controlling plant development and stress response. However, the function of these complexes has hardly been studied in other plant species. In this study, we identified the subunits of the SWI/SNF complex in sorghum and analyzed their evolutionary relationships in six grass species. The grass species conserved all the subunits as in Arabidopsis, but gene duplication occurred diversely in different species. Expression pattern analysis in sorghum (Sorghum bicolor) showed that most of the subunit-encoding genes were expressed constitutively, although the expression level was different. Transactivation assays revealed that SbAN3, SbGIF3, and SbSWI3B possessed transactivation activity, which suggests that they may interact with the pre-initiation complex (PIC) to activate transcription. We chose 12 subunits in sorghum to investigate their interaction relationship by yeast two-hybrid assay. We found that these subunits displayed distinct interaction patterns compared to their homologs in Arabidopsis and rice. This suggests that different SWI/SNF complexes may be formed in sorghum to perform chromatin remodeling functions. Through the integrated analysis of MNase-seq and RNA-seq data, we uncovered a positive relationship between gene expression levels and nucleosome phasing. Furthermore, we found differential global nucleosome enrichments between leaves and roots, as well as in response to PEG treatment, suggesting that dynamics of nucleosome occupancy, which is probably mediated by the SWI/SNF complex, may play important roles in sorghum development and stress response.

8.
Cancers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893181

ABSTRACT

AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.

9.
Immunity ; 57(8): 1780-1795.e6, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38843835

ABSTRACT

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Enhancer Elements, Genetic , Inflammation , Macrophages , Transcription Factors , Macrophages/immunology , Macrophages/metabolism , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Inflammation/immunology , Inflammation/genetics , Enhancer Elements, Genetic/genetics , Chromatin/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , Immunity, Innate , Humans
10.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Article in English | MEDLINE | ID: mdl-38884720

ABSTRACT

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Animals , DNA Methylation/genetics , Heart Defects, Congenital/genetics , Histones/metabolism , Histones/genetics , Protein Processing, Post-Translational , Mice , Heart Diseases/genetics , Heart Diseases/metabolism , Mutation
11.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38760885

ABSTRACT

Candida albicans is a human colonizer and also an opportunistic yeast occupying different niches that are mostly hypoxic. While hypoxia is the prevalent condition within the host, the machinery that integrates oxygen status to tune the fitness of fungal pathogens remains poorly characterized. Here, we uncovered that Snf5, a subunit of the chromatin remodeling complex SWI/SNF, is required to tolerate antifungal stress particularly under hypoxia. RNA-seq profiling of snf5 mutant exposed to amphotericin B and fluconazole under hypoxic conditions uncovered a signature that is reminiscent of copper (Cu) starvation. We found that under hypoxic and Cu-starved environments, Snf5 is critical for preserving Cu homeostasis and the transcriptional modulation of the Cu regulon. Furthermore, snf5 exhibits elevated levels of reactive oxygen species and an increased sensitivity to oxidative stress principally under hypoxia. Supplementing growth medium with Cu or increasing gene dosage of the Cu transporter CTR1 alleviated snf5 growth defect and attenuated reactive oxygen species levels in response to antifungal challenge. Genetic interaction analysis suggests that Snf5 and the bona fide Cu homeostasis regulator Mac1 function in separate pathways. Together, our data underlined a unique role of SWI/SNF complex as a potent regulator of Cu metabolism and antifungal stress under hypoxia.


Subject(s)
Antifungal Agents , Candida albicans , Copper , Gene Expression Regulation, Fungal , Oxidative Stress , Copper/metabolism , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Chromatin Assembly and Disassembly , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Fluconazole/pharmacology , Anaerobiosis , Amphotericin B/pharmacology
12.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701759

ABSTRACT

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Subject(s)
Alternative Splicing , Cell Differentiation , Chromatin , Heterogeneous-Nuclear Ribonucleoproteins , Neurons , Polypyrimidine Tract-Binding Protein , Transcription Factors , Alternative Splicing/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Mice , Neurons/metabolism , Neurons/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription, Genetic , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Exons/genetics , Humans , Cell Self Renewal/genetics
13.
Reprod Sci ; 31(8): 2150-2162, 2024 08.
Article in English | MEDLINE | ID: mdl-38740655

ABSTRACT

The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.


Subject(s)
DNA-Binding Proteins , Genital Neoplasms, Female , Transcription Factors , Humans , Female , Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Mutation , Animals
14.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
15.
Expert Opin Ther Pat ; 34(3): 159-169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38578210

ABSTRACT

INTRODUCTION: The multi-subunit SWI/SNF chromatin remodeling complex is a key epigenetic regulator for many cellular processes, and several subunits are found to be mutated in human cancers. The inactivating mutations of SMARCA4, the ATPase subunit of the complex, result in cellular dependency on the paralog SMARCA2 for survival. This observed synthetic lethal relationship posits targeting SMARCA2 in SMARCA4-deficient settings as an attractive therapeutic target in oncology. AREAS COVERED: This review covers patent literature disclosed during the 2019-30 June 2023 period which claim ATPase inhibitors and PROTAC degraders that bind to the ATPase domain of SMARCA2 and/or SMARCA4. A total of 16 documents from 6 applicants are presented. EXPERT OPINION: The demonstration of cellular dependence on SMARCA2 ATPase activity in SMARCA4-deficient settings has prompted substantial research toward SMARCA2-targeting therapies. Although selectively targeting the ATPase domain of SMARCA2 is viewed as challenging, several ATPase inhibitor scaffolds have been disclosed within the last five years. Most early compounds are weakly selective, but these efforts have culminated in the first dual SMARCA2/SMARCA4 ATPase inhibitor to enter clinical trials. Data from the ongoing clinical trials, as well as continued advancement of SMARCA2-selective ATPase inhibitors, are anticipated to significantly impact the field of therapies, targeting SMARCA4-deficient tumors.


Subject(s)
Antineoplastic Agents , DNA Helicases , Molecular Targeted Therapy , Neoplasms , Nuclear Proteins , Patents as Topic , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Antineoplastic Agents/pharmacology , DNA Helicases/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , Animals , Synthetic Lethal Mutations , Mutation , Adenosine Triphosphatases/metabolism
16.
Cureus ; 16(2): e55175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38558649

ABSTRACT

Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.

17.
Int J Cancer ; 155(1): 172-183, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38411299

ABSTRACT

Epithelioid glioblastoma (eGBM) is a rare subtype of GBM. Given the update of the definition of GBM, the understanding of the molecular characteristics and prognosis of "true" adult eGBM remains limited. Herein, we retrospectively analyzed the clinicopathological data of 39 adult eGBM cases. Adult eGBM primarily affected females, with a male-to-female ratio of 1:2.3. The average age of diagnosis was 53 years, and the tumor affected the temporal lobe in 41% of cases (16/39, 41%). Microscopically, the tumors consisted mainly or entirely of epithelioid cells. Perivascular infiltration (10/39, 25.6%) and leptomeningeal dissemination (7/39, 17.9%) were not uncommon. BRAF V600E mutation was detected in 40.9% of cases (n = 9/22). Next-generation sequencing revealed that CDKN2A/B homogeneous deletion was the most frequently mutated gene (8/10, 80%), followed by TERT promoter mutation (7/10, 70%), Cyclin-dependent kinases 4 or 6 (CDK4/6) amplification (5/10, 50%) and BRAF V600E mutation (50%, 5/10). Notably, the incidence of ARID1B mutation in eGBM was 50% (5/10), representing the first report of such a mutation in this subtype of GBM. ARID1B was known to be a subunit of the SWI/SNF chromatin remodeler. Chromosome analysis showed a 7+/10- signature in 90% (9/10) cases. Adult eGBM carried a dismal prognosis compared to GBM with IDH and H3 wild-type (typical GBM) (OS: 13.89 vs 24.30 months; P = .003) and even typical GBM without MGMT promoter methylation (OS: 13.89 vs 22.08 months; P = .036). Based on these findings, it can be concluded that adult eGBM harbors a high frequency of the 7+/10- signature and alterations in the MAPK pathway, SWI/SNF complex and cyclin-related genes and portends an extremely poor prognosis.


Subject(s)
Brain Neoplasms , DNA Modification Methylases , Glioblastoma , Mutation , Proto-Oncogene Proteins B-raf , Transcription Factors , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/mortality , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Adult , Aged , Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Proto-Oncogene Proteins B-raf/genetics , Chromosomal Proteins, Non-Histone/genetics , Telomerase/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase 4/genetics , Promoter Regions, Genetic/genetics , DNA Repair Enzymes/genetics
18.
Pathology ; 56(4): 504-515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413251

ABSTRACT

SMARCA4 mutation has emerged as a marker of poor prognosis in lung cancer and has potential predictive value in cancer treatment, but recommendations for which patients require its investigation are lacking. We comprehensively studied SMARCA4 alterations and the clinicopathological significance in a large cohort of immunohistochemically-subtyped non-small cell lung cancer (NSCLC). A total of 1416 patients was studied for the presence of SMARCA4 deficiency by immunohistochemistry (IHC). Thereafter, comprehensive sequencing of tumours was performed for 397 of these patients to study the mutational spectrum of SWI/SNF and SMARCA4 aberrations. IHC evidence of SMARCA4 deficiency was found in 2.9% of NSCLC. Of the sequenced tumours, 38.3% showed aberration in SWI/SNF complex, and 9.3% had SMARCA4 mutations. Strikingly, SMARCA4 aberrations were much more prevalent in large cell carcinoma (LCC) than other histological tumour subtypes. SMARCA4-deficient and SMARCA4-mutated tumours accounted for 40.5% and 51.4% of all LCC, respectively. Multivariable analyses confirmed SMARCA4 mutation was an independent prognostic factor in lung cancer. The immunophenotype of a subset of these tumours frequently showed TTF1 negativity and HepPAR1 positivity. SMARCA4 mutation or its deficiency was associated with positive smoking history and poor prognosis. It also demonstrated mutual exclusion with EGFR mutation. Taken together, the high incidence of SMARCA4 aberrations in LCC may indicate its diagnostic and prognostic value. Our study established the necessity of SMARCA4 IHC in the identification of SMARCA4-aberrant tumours, and this may be of particular importance in LCC and tumours without known driver events.


Subject(s)
Carcinoma, Large Cell , Carcinoma, Non-Small-Cell Lung , DNA Helicases , Nuclear Proteins , Transcription Factors , Female , Humans , Male , Biomarkers, Tumor/genetics , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , DNA Helicases/genetics , DNA Helicases/deficiency , Immunohistochemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Prognosis , Transcription Factors/genetics , Transcription Factors/deficiency
19.
Cells ; 13(2)2024 01 16.
Article in English | MEDLINE | ID: mdl-38247859

ABSTRACT

Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.


Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , Humans , Cardiovascular Diseases/genetics , Chromatin , Epigenomics , Sucrose
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1032178

ABSTRACT

Objective To investigate the clinicopathological features, immunophenotype, diagnosis and treatment of SMARCA4 (BRG1)-deficient carcinoma. Methods Clinical data of 11 patients with SMARCA4 (BRG1)-deficient cancer were collected. The morphologic and immunohistochemical features of this tumour were summarized, and the relevant literature was reviewed. Results Among the 11 cases of SMARCA4 (BRG1)-deficient carcinoma, eight were male and three were female, with median age of 60. Seven patients underwent radical resection, and four underwent traditional joint targeted chemotherapy and immunotherapy. Microscopically, the tumor cells were epithelioid, rhabdoid or spindle-shaped, with prominent eosinophilic nucleoli and frequent mitoses (>5/10 HPF). Multiple foci of necrosis were found in the tumor tissue, a large number of tumor emboli in the blood vessels and myxoid stromal degeneration. Among these cases, 11 cases showed loss of SMARCA4 (BRG1) expression, whereas the CK and Vim markers were expressed, SMARCB1 (INI1) expression was retained, and p53 mutation was detected. The tumor cells showed high proliferation activity (Ki-67>60%), and synaptophsin was moderately positive. Three cases were mismatch repair deficient and respectively showed the loss of MLH1/PMS2, PMS2 and MSH6 expression. Conclusion The incidence of SMARCA4 (BRG1) -dificient carcinoma is low. It can be easily confused with other tumors and is difficult to be diagnosed before operation, which requires confirmation by immunohistochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL