Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.331
Filter
1.
PLoS One ; 19(6): e0305906, 2024.
Article in English | MEDLINE | ID: mdl-38905201

ABSTRACT

Uric acid induces radical oxygen species formation, endothelial inflammation, and endothelial dysfunction which contributes to the progression of atherosclerosis. Febuxostat inhibits BCRP- and allopurinol stimulates MRP4-mediated uric acid efflux in human embryonic kidney cells. We hypothesized that endothelial cells express uric acid transporters that regulate intracellular uric acid concentration and that modulation of these transporters by febuxostat and allopurinol contributes to their different impact on cardiovascular mortality. The aim of this study was to explore a potential difference between the effect of febuxostat and allopurinol on uric acid uptake by human umbilical vein endothelial cells. Febuxostat increased intracellular uric acid concentrations compared with control. In contrast, allopurinol did not affect intracellular uric acid concentration. In line with this observation, febuxostat increased mRNA expression of GLUT9 and reduced MRP4 expression, while allopurinol did not affect mRNA expression of these uric acid transporters. These findings provide a possible pathophysiological pathway which could explain the higher cardiovascular mortality for febuxostat compared to allopurinol but should be explored further.


Subject(s)
Allopurinol , Febuxostat , Glucose Transport Proteins, Facilitative , Human Umbilical Vein Endothelial Cells , Multidrug Resistance-Associated Proteins , Uric Acid , Humans , Allopurinol/pharmacology , Febuxostat/pharmacology , Uric Acid/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Biological Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation/drug effects
2.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823536

ABSTRACT

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Subject(s)
Enzyme Inhibitors , Luteolin , Molecular Docking Simulation , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Molecular Dynamics Simulation , Flowers/chemistry , Allopurinol/pharmacology , Allopurinol/chemistry , Humans , Binding Sites
3.
J Ethnopharmacol ; 333: 118488, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38925319

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY: This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS: The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS: The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.


Subject(s)
Disease Models, Animal , Flavonoids , Hyperuricemia , Organic Anion Transporters , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/chemically induced , Uric Acid/blood , Male , Flavonoids/pharmacology , Flavonoids/analysis , Mice , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Flowers/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Allopurinol/pharmacology , Mice, Inbred ICR
4.
Int J Biol Macromol ; 275(Pt 1): 133450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944077

ABSTRACT

Xanthine oxidase (XO) is a typical target for hyperuricemia and gout, for which there are only three commercial xanthine oxidase inhibitors (XOIs): febuxostat, topiroxostat and allopurinol. However, these inhibitors have problems such as low bioactivity and several side effects. Therefore, the development of novel XOIs with high bioactivity for the treatment of hyperuricemia and gout is urgently needed. In this work we constructed a XO immobilized cellulose membrane colorimetric biosensor (XNCM) by the TEMPO oxidation, amide bond coupling and nitro blue tetrazolium chloride (NBT) loading method. As expected, the XNCM was able to detect xanthine, with high selectivity and sensitivity by colorimetric method with a distinctive color change from yellow to purple, which can be easily observed by the naked-eye in just 8 min without any complex instrumentation. In addition, the XNCM sensor performed screening of 21 different compounds and have been successfully pre-screened out XOIs with biological activity. Most importantly, the XNCM was able to quantitatively detect the IC50 values of two commercial inhibitors (febuxostat and allopurinol). All the results confirmed that the XNCM is a simple and effective tool which can be used for the accelerated screening of XOIs and has the potential to uncover additional XOIs.


Subject(s)
Biosensing Techniques , Cellulose , Colorimetry , Enzyme Inhibitors , Enzymes, Immobilized , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Colorimetry/methods , Biosensing Techniques/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/analysis , Cellulose/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/antagonists & inhibitors , Membranes, Artificial , Allopurinol/pharmacology , Humans , Drug Evaluation, Preclinical
5.
Brain Res Bull ; 213: 110973, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723694

ABSTRACT

Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.


Subject(s)
Allopurinol , Epilepsy , Hyperuricemia , Hyperuricemia/drug therapy , Allopurinol/pharmacology , Allopurinol/therapeutic use , Humans , Epilepsy/drug therapy , Epilepsy/metabolism , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Uric Acid/metabolism , Xanthine Oxidase/metabolism , Xanthine Oxidase/antagonists & inhibitors , Brain/metabolism , Brain/drug effects
6.
Food Funct ; 15(11): 6068-6081, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757391

ABSTRACT

Epigallocatechin gallate (EGCG), a prominent bioactive compound found in tea, offers numerous health benefits. Previous studies have highlighted its potential in mitigating hyperuricemia. In this study, hyperuricemic mice induced by potassium oxonate (PO) were treated with EGCG or the anti-hyperuricemia medication allopurinol (AP) to investigate the mechanisms underlying their anti-hyperuricemic effects. The results demonstrated that both EGCG and AP significantly reduced serum uric acid (UA) levels. Further analysis revealed that EGCG promoted the expression of UA secretion transporter genes (Oat1 and Oct1) while inhibiting the expression of UA reabsorption transporter genes (Urat1 and Glut9) in the kidney. By 16S rDNA sequencing, EGCG, but not AP, was found to alter the composition of the gut microbiota. Notably, EGCG induced significant changes in the relative abundance of specific bacteria such as Lactobacillus, Faecalibaculum, and Bifidobacterium, which displayed high correlations with serum UA levels and UA-related gene expression. Metabolomic analysis suggested that EGCG-induced modifications in bacterial metabolites might contribute to the alleviation of hyperuricemia. Transcriptomic analysis of the intestinal epithelium identifies 191 differentially expressed genes (DEGs) in EGCG-treated mice, including 8 purine-related genes. This study elucidates the anti-hyperuricemic mechanisms of EGCG, particularly its influence on the gut microbiota and gene expression in the intestinal epithelium.


Subject(s)
Catechin , Disease Models, Animal , Gastrointestinal Microbiome , Hyperuricemia , Uric Acid , Animals , Hyperuricemia/drug therapy , Catechin/analogs & derivatives , Catechin/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Uric Acid/blood , Uric Acid/metabolism , Mice, Inbred C57BL , Allopurinol/pharmacology , Kidney/drug effects , Kidney/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Oxonic Acid , Intestines/drug effects , Intestines/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Glucose Transport Proteins, Facilitative
7.
Expert Opin Drug Metab Toxicol ; 20(6): 519-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809523

ABSTRACT

INTRODUCTION: In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED: This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION: Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Allopurinol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasm Proteins , Pharmacogenetics , Rosuvastatin Calcium , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Allopurinol/pharmacokinetics , Allopurinol/administration & dosage , Allopurinol/pharmacology , Polymorphism, Genetic , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Animals , Mutation, Missense
8.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338887

ABSTRACT

Vascularized composite allotransplantation (VCA) represents a promising reconstructive solution primarily conducted to improve quality of life. However, tissue damage caused by cold-ischemia (CI) storage prior to transplant represents a major factor limiting widespread application. This study investigates the addition of the novel free radical scavenger PrC-210 to UW Organ Preservation Solution (UW Solution) to suppress CI-induced skeletal muscle injury in a rat hind limb amputation model. Lewis rats received systemic perfusion of UW solution +/- PrC-210 (0 mM control, 10 mM, 20 mM, 30 mM, or 40 mM), followed by bilateral transfemoral amputation. Limbs were stored in 40 mL of the same perfusate at 4 °C for 48 h. Muscle punch biopsies were taken at set times over the 48 h cold-storage period and analyzed for caspase-3,7 activity, cytochrome C levels, and qualitative histology. A single 15 s perfusion of PrC-210-containing UW Solution conferred a dose-dependent reduction in CI-induced muscle cell death over 48 h. In the presence of PrC-210, muscle cell mitochondrial cytochrome C release was equivalent to 0 h controls, with profound reductions in the caspase-3,7 apoptotic marker that correlated with limb histology. PrC-210 conferred complete prevention of ROS-induced mitochondrial lysis in vitro, as measured by cytochrome C release. We conclude that the addition of 30 mM PrC210 to UW Solution conferred the most consistent reduction in CI limb damage, and it warrants further investigation for clinical application in the VCA setting.


Subject(s)
Composite Tissue Allografts , Diamines , Organ Preservation Solutions , Reperfusion Injury , Sulfhydryl Compounds , Rats , Animals , Free Radical Scavengers , Caspase 3 , Composite Tissue Allografts/pathology , Cytochromes c , Quality of Life , Rats, Inbred Lew , Glutathione/pharmacology , Allopurinol/pharmacology , Insulin/pharmacology , Ischemia , Organ Preservation , Cold Temperature , Reperfusion Injury/pathology , Raffinose , Adenosine
9.
BMC Nephrol ; 25(1): 62, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389057

ABSTRACT

BACKGROUND: The composition of organ preservation solutions is crucial for maintaining graft integrity and early graft function after transplantation. The aim of this study is to compare new organ preservation solution PERLA® with the gold standard preservation solution University of Wisconsin (UW) regarding oxidative stress and early graft injury. METHODS: In order to assess oxidative stress after cold storage, kidney grafts have been preserved for 18 h at 4° C in either UW solution or PERLA® solution and then assessed for oxidative stress injury (protocol 1). To assess kidney injuries and oxidative stress after reperfusion, rat kidneys were harvested, stored in cold UW or in PERLA® solutions for 18 h at 4 °C and then transplanted heterotopically for 6 h (protocol 2). PERLA® is a high Na+/low K+ solution including PEG-35 (1 g/L), trimetazidine (1 µM), carvedilol (10 µM) and tacrolimus (5 µM). RESULTS: Our results showed that preservation of kidneys in PERLA® solution significantly attenuates oxidative stress parameters after cold storage and reperfusion. We found a significant decrease in oxidative damage indicators (MDA, CD and CP) and a significant increase in antioxidant indicators (GPx, GSH, CAT, SOD and PSH). Moreover, PERLA® solution decreased kidney injury after reperfusion (creatinine, LDH and uric acid). CONCLUSION: PERLA® solution was more effective than UW storage solution in preserving rat's kidney grafts.


Subject(s)
Kidney Transplantation , Organ Preservation Solutions , Reperfusion Injury , Humans , Rats , Animals , Kidney Transplantation/adverse effects , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Organ Preservation Solutions/pharmacology , Kidney/metabolism , Allopurinol/pharmacology , Oxidative Stress , Adenosine , Glutathione , Insulin , Raffinose
10.
J Tradit Chin Med ; 44(1): 182-187, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213253

ABSTRACT

OBJECTIVE: To evaluate the effect of Dahuang Mudan Tang (, DHMD) and allopurinol on the treatment of chronic kidney disease staged G1-G3b patients with hyperuricemia and to provide novel insights into the clinical management of chronic kidney disease complications. METHODS: A total of 80 chronic kidney patients staged G1-G3b with hyperuricemia were randomly grouped to receive single allopurinol treatment (control) and combined treatment with DHMD (treated) for 8 weeks. The kidney function and proteinuria indicators of patients were compared between pre-and post-treatment. The oxidative stress and inflammation responses were evaluated by corresponding indicators and cytokines. The clinical efficiency rate and adverse reaction events were also summarized to assess the therapeutic efficiency and safety. RESULTS: The kidney function and proteinuria of enrolled patients were alleviated after their therapies, behaved as the increasing estimated glomerular filtration rate and decreasing serum creatinine, serum uric acid, urea nitrogen, 24 h urine protein levels. On the other hand, the malondialdehyde level and pro-inflammation cytokines were suppressed by the therapies, and the superoxide dismutase was found to be significantly enhanced. Patients in the treated groups showed a better recovery in kidney function, proteinuria, oxidative stress, and inflammation response. Moreover, patients in the treated group showed a higher efficiency rate (95%) and fewer adverse reaction events (5%). CONCLUSIONS: The combination of allopurinol with DHMD significantly promoted the recovery of chronic kidney disease stage G1-G3b patients with hyperuricemia, which can be considered a novel clinical therapeutic strategy.


Subject(s)
Hyperuricemia , Renal Insufficiency, Chronic , Humans , Allopurinol/therapeutic use , Allopurinol/pharmacology , Hyperuricemia/drug therapy , Hyperuricemia/complications , Uric Acid , Treatment Outcome , Renal Insufficiency, Chronic/drug therapy , Proteinuria/complications , Proteinuria/drug therapy , Oxidative Stress , Kidney , Inflammation/drug therapy , Inflammation/chemically induced , Cytokines
11.
J Mater Chem B ; 12(4): 1064-1076, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38168723

ABSTRACT

An appropriate non-oral platform via transdermal delivery of drugs is highly recommended for the treatment of hyperuricemia. Herein, a core-shell structured microneedle patch with programmed drug release functions was designed to regulate serum uric acid (SUA) levels for prolonged hyperuricemia management. The patch was fabricated using a three-step casting method. Allopurinol (AP), an anti-hyperuricemic drug, was encapsulated within the carboxymethyl cellulose (CMC) layer, forming the "shell" of the MNs. The MN's inner core was composed of polyvinylpyrrolidone (PVP) loaded with urate oxidase-calcium peroxide nanoparticles (UOx-CaO2 NPs). When the as-fabricated core-shell structured microneedles were inserted into the skin, the loaded AP was first released immediately to effectively inhibit the production of SUA due to the water solubility of CMC. Subsequently, the internal SUA was further metabolized by UOx, leading to exposure of CaO2 NPs. The sustained release of UOx accompanied by the decomposition of CaO2 NPs contributed to maintaining a state of normal uric acid levels over an extended period. More attractively, uric acid could be oxidized due to the strong oxidant of CaO2, which was beneficial to the continuous consumption of uric acid. In vivo results showed that the as-fabricated MNs exhibited an excellent anti-hyperuricemia effect to reduce SUA levels to the normal state within 3 h and maintain the normouricemia state for 12 h. In addition, the levels of creatinine (Cr) and blood urea nitrogen (BUN) in the serum remained within the normal range, and the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) in the liver were effectively inhabited, mitigating the risk of liver and kidney damage for clinical anti-hyperuricemia management.


Subject(s)
Hyperuricemia , Humans , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid , Kidney/metabolism , Drug Liberation , Allopurinol/metabolism , Allopurinol/pharmacology , Allopurinol/therapeutic use
12.
Transplant Proc ; 56(1): 223-227, 2024.
Article in English | MEDLINE | ID: mdl-38199859

ABSTRACT

The University of Wisconsin (UW) solution is the most effective preservation solution currently used; however, to safely use expanded-criteria donor grafts, a new cold storage solution that alleviates graft injury more effectively is required. We prepared a heavy water (D2O)-containing buffer, Dsol, and observed strong protective effects during extended cold storage of rat hearts and livers. In the current study, we modified Dsol (mDsol) and tested its efficacy. The aim of the present study was to determine whether mDsol could protect the rat liver more effectively than the UW solution and to clarify the roles of D2O and deferoxamine (DFX). Rat livers were subjected to cold storage for 48 hours in test solutions: UW, mDsol, mDsol without D2O or DFX (mDsol-D2O[-], mDsol-DFX[-]), and subsequently reperfused on an isolated perfused rat liver for 90 minutes at 37°C. In the UW group, the liver was dehydrated during cold storage and rapidly expanded during reperfusion. Accordingly, the cumulative weight change was the highest in the UW group, together with augmented portal veinous resistance and ALT leakage and decreased oxygen consumption rate and bile production. These changes were significantly suppressed in the mDsol-treated group. In the mDsol-D2O(-) and mDsol-DFX(-) groups offered partial protection. In conclusion, mDsol appeared to be superior to the UW solution for simple cold storage of the rat liver, presumably due to improved microcirculation in the early phase of reperfusion. Both heavy water and deferoxamine are essential for alleviating seamless organ swelling that occurs during cold storage and subsequent reperfusion.


Subject(s)
Liver Transplantation , Organ Preservation Solutions , Humans , Rats , Animals , Deuterium Oxide/pharmacology , Deferoxamine/pharmacology , Liver , Organ Preservation Solutions/pharmacology , Reperfusion , Glutathione/pharmacology , Allopurinol/pharmacology , Insulin/pharmacology , Raffinose/pharmacology , Organ Preservation , Adenosine
13.
Avian Pathol ; 53(1): 80-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37881947

ABSTRACT

In this study, an attempt was made to evaluate the relative efficacy of two important anti-gout agents, viz. allopurinol and febuxostat, in the control of hyperuricaemia/gout using a poultry model. A 21-day study was conducted on 48 Vencobb-400 broiler chicks randomly divided into four groups. In one group hyperuricaemia/gout was induced by the oral administration of diclofenac (group D); in two other groups the ameliorative effect of the two drugs under study was investigated by providing both simultaneously, i.e. diclofenac and allopurinol (group DA), diclofenac and febuxostat (group DF); and the fourth group was kept un-induced and untreated as a control (group C). Both allopurinol and febuxostat inhibit xanthine oxidase enzymes, thereby reducing the production of uric acid. The birds kept on diclofenac alone exhibited the highest level of hyperuricaemia, clinical signs of gout, and overt adverse changes in the visceral organs, whereas these changes were lesser in allopurinol- and febuxostat-treated groups. Furthermore, haematological, biochemical, patho-morphological, and ultra-structural studies using transmission electron microscopy were carried out to evaluate the pathology and, thus, the ameliorative effect of allopurinol and febuxostat. The findings proved that allopurinol and febuxostat carry definite ameliorative potential as anti-hyperuricemic and anti-gout agents in poultry, which was better expressed by febuxostat compared to allopurinol.


Subject(s)
Gout , Hyperuricemia , Animals , Allopurinol/pharmacology , Chickens , Diclofenac/adverse effects , Febuxostat/pharmacology , Gout/chemically induced , Gout/drug therapy , Gout/veterinary , Gout Suppressants/pharmacology , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Hyperuricemia/veterinary , Poultry , Treatment Outcome , Xanthine Oxidase/pharmacology , Disease Models, Animal
14.
Transplant Proc ; 55(9): 2212-2217, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770367

ABSTRACT

BACKGROUND: The University of Wisconsin (UW) solution is the gold standard for preserving the liver, kidneys, and pancreas. For renal preservation, the addition of the flavonoid, quercetin (QE), to the preservation solution reduces damage to renal tubular cells, and the addition of sucrose (Suc) is also beneficial for preservation. The aim of this study was to investigate the protective effects of QE and Suc on porcine livers in terms of warm and cold injury and to evaluate whether their use improves ischemia-reperfusion (I/R) injury after simple cold storage (CS). METHODS: We tested porcine livers procured after 30 minutes of warm ischemia followed by preservation for 6 hours under the following 2 conditions: group 1, preserved with the CS/UW solution (n = 4); group 2, preserved with the CS/UW solution containing Que 33.1 µM and Suc 0.1 M (n = 6). All livers were evaluated using an ex vivo isolated liver reperfusion model with saline-diluted autologous blood. RESULTS: Aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase levels in group 2 were significantly lower at 30 minutes of reperfusion than in group 1. Furthermore, histologic evaluation by hematoxylin and eosin staining showed significantly fewer morphologic changes in group 2 than in group 1, as indicated by the total Suzuki score. Group 2 also had significantly better scores for sinusoidal congestion and hepatocyte cytoplasmic vacuolization. CONCLUSION: Adding Que and Suc to the UW solution can effectively prevent cold injury in livers donated after circulatory death.


Subject(s)
Cold Injury , Organ Preservation Solutions , Reperfusion Injury , Humans , Swine , Animals , Organ Preservation , Quercetin/pharmacology , Organ Preservation Solutions/pharmacology , Liver/pathology , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Glutathione/pharmacology , Allopurinol/pharmacology , Insulin/pharmacology , Raffinose/pharmacology , Cold Injury/pathology
15.
ChemMedChem ; 18(20): e202300184, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37642254

ABSTRACT

In this work, a new set of quinazolin-2,4,6-triamine derivatives were synthesized to explore their potential biological activity as xanthine oxidase (XO) inhibitors, superoxide scavengers and screening of their toxicological profile. Among all the synthesized compounds, B1 exhibited better inhibitory activity against bovine xanthine oxidase (bXO) than allopurinol (IC50 =1.56 µM and IC50 =6.99 µM, respectively). As superoxide scavengers, B1, B2 and B13 exhibited a better effect than allopurinol (97.3 %, 82.1 %, 87.4 % and 69.4 %, respectively). Regarding the toxicological profile, B1 was less cytotoxic than methotrexate on HCT-15 cancer cells. Apoptosis results obtained in cells of female and male mice, showed that B1 and B2 presented a similar behaviour to CrO3 (positive control) with respect to the average frequency to induce apoptosis; while B13 apoptosis induced effect was similar to DMSO and control group. Finally, B1, B2, B13 did not induce genotoxicity in a micronuclei murine model compared to CrO3 .


Subject(s)
Allopurinol , Xanthine Oxidase , Female , Male , Animals , Cattle , Mice , Allopurinol/pharmacology , Superoxides , Enzyme Inhibitors/toxicity , Pyrazoles/pharmacology
16.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446786

ABSTRACT

Curcumin and artemisinin are commonly used in traditional East Asian medicine. In this study, we investigated the inhibitory effects of these active compounds on xanthine oxidase (XO) using allopurinol as a control. XO was purified from the serum of arthritis patients through ammonium sulfate precipitation (65%) and ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose. The specific activity of the purified enzyme was 32.5 U/mg protein, resulting in a 7-fold purification with a yield of 66.8%. Molecular docking analysis revealed that curcumin had the strongest interaction energy with XO, with a binding energy of -9.28 kcal/mol. The amino acid residues Thr1077, Gln762, Phe914, Ala1078, Val1011, Glu1194, and Ala1079 were located closer to the binding site of curcumin than artemisinin, which had a binding energy of -7.2 kcal/mol. In vitro inhibition assays were performed using nanocurcumin and artemisinin at concentrations of 5, 10, 15, 20, and 25 µg/mL. Curcumin inhibited enzyme activity by 67-91%, while artemisinin had a lower inhibition ratio, which ranged from 40-70% compared to allopurinol as a control.


Subject(s)
Artemisinins , Arthritis , Curcumin , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/blood , Curcumin/chemistry , Curcumin/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Humans , Arthritis/blood , Arthritis/enzymology , Molecular Docking Simulation , Allopurinol/chemistry , Allopurinol/pharmacology , Protein Binding
17.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446116

ABSTRACT

The prolonged cooling of cells results in cell death, in which both apoptosis and ferroptosis have been implicated. Preservation solutions such as the University of Wisconsin Cold Storage Solution (UW) encompass approaches addressing both. The use of UW improves survival and thus extends preservation limits, yet it remains unclear how exactly organ preservation solutions exert their cold protection. Thus, we explored cooling effects on lipid peroxidation and adenosine triphosphate (ATP) levels and the actions of blockers of apoptosis and ferroptosis, and of compounds enhancing mitochondrial function. Cooling and rewarming experiments were performed in a cellular transplantation model using Human Embryonic Kidney (HEK) 293 cells. Cell viability was assessed by neutral red assay. Lipid peroxidation levels were measured by Western blot against 4-Hydroxy-Nonenal (4HNE) and the determination of Malondialdehyde (MDA). ATP was measured by luciferase assay. Cooling beyond 5 h in Dulbecco's Modified Eagle Medium (DMEM) induced complete cell death in HEK293, whereas cooling in UW preserved ~60% of the cells, with a gradual decline afterwards. Cooling-induced cell death was not precluded by inhibiting apoptosis. In contrast, the blocking of ferroptosis by Ferrostatin-1 or maintaining of mitochondrial function by the 6-chromanol SUL150 completely inhibited cell death both in DMEM- and UW-cooled cells. Cooling for 24 h in UW followed by rewarming for 15 min induced a ~50% increase in MDA, while concomitantly lowering ATP by >90%. Treatment with SUL150 of cooled and rewarmed HEK293 effectively precluded the increase in MDA and preserved normal ATP in both DMEM- and UW-cooled cells. Likewise, treatment with Ferrostatin-1 blocked the MDA increase and preserved the ATP of rewarmed UW HEK293 cells. Cooling-induced HEK293 cell death from hypothermia and/or rewarming was caused by ferroptosis rather than apoptosis. UW slowed down ferroptosis during hypothermia, but lipid peroxidation and ATP depletion rapidly ensued upon rewarming, ultimately resulting in complete cell death. Treatment throughout UW cooling with small-molecule Ferrostatin-1 or the 6-chromanol SUL150 effectively prevented ferroptosis, maintained ATP, and limited lipid peroxidation in UW-cooled cells. Counteracting ferroptosis during cooling in UW-based preservation solutions may provide a simple method to improve graft survival following cold static cooling.


Subject(s)
Ferroptosis , Hypothermia , Humans , HEK293 Cells , Rewarming , Universities , Wisconsin , Adenosine Triphosphate/metabolism , Cold Temperature , Allopurinol/pharmacology , Glutathione/pharmacology , Insulin/pharmacology , Organ Preservation
18.
J Ethnopharmacol ; 317: 116777, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37311502

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) Compound Shizhifang (SZF), consisting of the seeds of four Chinese herbs, has been used in Shanghai Shuguang Hospital in China for more than 20 years and has proven its clinical safety and efficacy in lowering uric acid and protecting kidney function. AIM OF THE STUDY: Hyperuricemia (HUA)-induced pyroptosis of renal tubular epithelial cells serves as a significant cause of tubular damage. SZF proves to be effective in alleviating renal tubular injury and inflammation infiltration of HUA. However, the inhibiting effect of SZF on pyroptosis in HUA still remains elusive. This study aims to verify whether SZF could ameliorate pyroptosis in tubular cells induced by uric acid (UA). MATERIALS AND METHODS: Quality control analysis and chemical and metabolic identification for SZF and SZF drug serum were performed by using UPLC-Q-TOF-MS. In vitro, human renal tubular epithelial cells (HK-2) stimulated by UA were treated with SZF or NLRP3 inhibitor (MCC950). HUA mouse models were induced by intraperitoneal injection of potassium oxonate (PO). Mice were treated with SZF, allopurinol or MCC950. We focused on evaluated the effect of SZF on the NLRP3/Caspase-1/GSDMD pathway, renal function, pathologic structure and inflammation. RESULTS: SZF significantly restrained the activation of the NLRP3/Caspase-1/GSDMD pathway in vitro and in vivo induced by UA. SZF was better than allopurinol and MCC950 in reducing pro-inflammatory cytokine levels, attenuating tubular inflammatory injury, inhibiting interstitial fibrosis and tubular dilation, maintaining tubular epithelial cell function, and protecting kidney. Furthermore, 49 chemical compounds of SZF and 30 metabolites in serum after oral administration were identified. CONCLUSIONS: SZF inhibits UA-induced renal tubular epithelial cell pyroptosis via by targeting NLRP3 to inhibit tubular inflammatory and prevent the progression of HUA-induced renal injury effectively.


Subject(s)
Hyperuricemia , Inflammasomes , Humans , Mice , Animals , Inflammasomes/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Allopurinol/metabolism , Allopurinol/pharmacology , Allopurinol/therapeutic use , Uric Acid/metabolism , Signal Transduction , China , Inflammation/drug therapy , Inflammation/metabolism , Caspases/metabolism , Epithelial Cells
19.
Food Chem Toxicol ; 178: 113868, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269893

ABSTRACT

Renal ischemia/reperfusion (I/R) is a common cause of acute kidney injury and remote liver damage is an ultimate negative outcome. Current treatments for renal I/R typically involve the use of antioxidants and anti-inflammatory to protect against oxidative stress and inflammation. Xanthine oxidase (XO) and PPAR-γ contribute to renal I/R-induced oxidative stress; however, the crosstalk between the two pathways remains unexplored. In the present study, we report that XO inhibitor, allopurinol (ALP), protects kidney and liver after renal I/R by PPAR-γ activation. Rats with renal I/R showed reduced kidney and liver functions, increased XO, and decreased PPAR-γ. ALP increased PPAR-γ expression and improved liver and kidney functions. ALP also reduced inflammation and nitrosative stress indicated by reduction in TNF-α, iNOS, nitric oxide (NO), and peroxynitrite formation. Interestingly, rats co-treated with PPAR-γ inhibitor, BADGE, and ALP showed diminished beneficial effect on renal and kidney functions, inflammation, and nitrosative stress. This data suggests that downregulation of PPAR-γ contributes to nitrosative stress and inflammation in renal I/R and the use of ALP reverses this effect by increasing PPAR-γ expression. In conclusion, this study highlights the potential therapeutic value of ALP and suggests targeting XO-PPAR-γ pathway as a promising strategy for preventing renal I/R injury.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Rats , Animals , PPAR gamma/metabolism , Allopurinol/pharmacology , Allopurinol/metabolism , Allopurinol/therapeutic use , Xanthine Oxidase/metabolism , Rats, Wistar , Kidney , Acute Kidney Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Inflammation/metabolism
20.
Sci Rep ; 13(1): 9373, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296297

ABSTRACT

Allopurinol, widely used in gout treatment, is the most common cause of severe cutaneous adverse drug reactions. The risk of developing such life-threatening reactions is increased particularly for HLA-B*58:01 positive individuals. However the mechanism of action between allopurinol and HLA remains unknown. We demonstrate here that a Lamin A/C peptide KAGQVVTI which is unable to bind HLA-B*58:01 on its own, is enabled to form a stable peptide-HLA complex only in the presence of allopurinol. Crystal structure analysis reveal that allopurinol non-covalently facilitated KAGQVVTI to adopt an unusual binding conformation, whereby the C-terminal isoleucine does not engage as a PΩ that typically fit deeply in the binding F-pocket. A similar observation, though to a lesser degree was seen with oxypurinol. Presentation of unconventional peptides by HLA-B*58:01 aided by allopurinol contributes to our fundamental understanding of drug-HLA interactions. The binding of peptides from endogenously available proteins such as self-protein lamin A/C and viral protein EBNA3B suggest that aberrant loading of unconventional peptides in the presence of allopurinol or oxypurinol may be able to trigger anti-self reactions that can lead to Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS).


Subject(s)
Allopurinol , Stevens-Johnson Syndrome , Humans , Allopurinol/pharmacology , Lamin Type A , Oxypurinol , Genotype , Stevens-Johnson Syndrome/etiology , HLA-B Antigens/genetics , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL