Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125604

ABSTRACT

The growing activity in the textile industry has been demanding the search for new and innovative technologies to meet consumers' needs regarding more sustainable and ecological processes, with functionality receiving more attention. Bee products are known for their wide spectra of properties, including antioxidant and antibacterial activities. Propolis and honey are the most popular and used since ancient times for the most diverse applications due to their health benefits. With the increasing need for safer and more sustainable practices, the use of natural products for the functional finishing process can be a suitable alternative due to their safety and eco-friendly nature. For that, a biosolution, composed of a mixture of propolis and honey in water, was used to perform the functional finishing of cotton knits, both in the presence and in the absence of potassium alum as a chemical mordant. The fastness strength was also evaluated after three washing cycles. The antioxidant potential of the biosolution, assessed with the in vitro ABTS scavenging assay, provided textiles with the capacity to reduce more than 90% of the ABTS radical, regardless of the mordant presence and even after three washing cycles. Furthermore, biofunctional textiles decreased the growth of Bacillus subtilis, Propionibacterium acnes, Escherichia coli, and, particularly, Staphylococcus aureus cultures after 24 h of incubation with an increase in antibacterial activity when potassium alum was used. These findings show that bee products are promising and effective alternatives to be used in the textile industry to confer antioxidant and antibacterial properties to cotton textiles, thereby enhancing human health.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Honey , Propolis , Propolis/chemistry , Propolis/pharmacology , Honey/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Textiles , Cotton Fiber/analysis , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Escherichia coli/drug effects , Escherichia coli/growth & development , Alum Compounds/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development
2.
Sci Rep ; 14(1): 16808, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039161

ABSTRACT

A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.


Subject(s)
Cadmium , Cellulose , Copper , Molecular Docking Simulation , Cellulose/chemistry , Copper/chemistry , Cadmium/chemistry , Adsorption , Mercury/chemistry , Alum Compounds/chemistry , Kinetics , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Chelating Agents/chemistry
3.
Waste Manag ; 186: 94-108, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38870604

ABSTRACT

Alum sludge (AS) is a by-product generated from drinking water treatment and produced in large amounts around the world. Its chemical composition makes this waste an emerging alternative source of silicon and aluminum for aluminosilicates or zeolite material production, which can add value to residues and contribute to the circular economy process on a global scale. In this sense, and considering the scarcity of information about AS, this review shows data collection about AS in different countries, including generation, chemical composition, and disposal information. The reuse of AS is discussed based on circular economy and the environmental gains derived from such approaches are highlighted, including the possibility of utilization with other residues (e.g., ash, bioproducts, etc). Moreover, this review shows and discusses the benefits and challenges of AS reuse in the synthesis process and how it can be a sustainable raw material for aluminosilicates and zeolite synthesis. The most common conditions (conventional or non-conventional) in zeolite synthesis from AS are mentioned and advantages, limitations and trends are discussed. The discussions and data presented can improve the AS management and reuse legislations, which certainly will collaborate with sustainable AS use and circular economy processes.


Subject(s)
Alum Compounds , Aluminum Silicates , Recycling , Sewage , Water Purification , Zeolites , Zeolites/chemistry , Aluminum Silicates/chemistry , Alum Compounds/chemistry , Water Purification/methods , Recycling/methods , Waste Disposal, Fluid/methods
4.
Chemosphere ; 362: 142537, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844101

ABSTRACT

The discharge of heavy metals into the environment has adversely affected the aquatic ecosystem due to their toxic and non-biodegradable nature. In this research, a three-dimensional graphene oxide/carboxymethylcellulose/aluminium sulphate (GOCAS) aerogel was synthesised and evaluated as a novel means for lead and zinc removal. The GOCAS aerogel was prepared via ice-templating of graphene oxide with carboxymethylcellulose and aluminium sulphate as the crosslinking and functionalisation additives. Characterisation of the aerogel by various analytical techniques confirmed the successful integration of the chemical additives. The hydroxyl and sulphate groups in the aerogel were found to participate in the adsorption of both metals. The equilibrium of lead adsorption was found to correlate well to the Freundlich isotherm, while zinc adsorption fitted closely the Langmuir isotherm. The kinetic adsorption behaviour of both metals was best described as pseudo-second-order. The interactive influences of concentration, temperature, contact time and adsorbent dose on the metal removal were explored by a central composite design, and the optimum adsorption capacity for lead was determined to be 138.7 mg/g at a GOCAS dose of 20 mg, initial concentration of 100 mg/L, temperature of 50 °C and contact time of 45 min. The optimum adsorption capacity for zinc was 52.69 mg/g at 30 mg, 65 mg/L, 45 °C and 40 min. Furthermore, regeneration studies with hydrochloric acid eluant were successfully conducted for up to four adsorption-desorption cycles. Overall, this work demonstrates that GOCAS aerogel is a viable nanosorbent for the adsorption of lead and zinc from water systems.


Subject(s)
Alum Compounds , Graphite , Lead , Water Pollutants, Chemical , Water Purification , Zinc , Graphite/chemistry , Lead/chemistry , Lead/isolation & purification , Adsorption , Zinc/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Alum Compounds/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry
5.
J Med Chem ; 67(10): 8346-8360, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38741265

ABSTRACT

Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 µM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 µM for hTLR7 and 18.25 µM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Animals , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/chemical synthesis , Mice , Female , Alum Compounds/pharmacology , Alum Compounds/chemistry , Mice, Inbred BALB C , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
6.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705451

ABSTRACT

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Subject(s)
Alum Compounds , Dairying , Phosphates , Sewage , Adsorption , Phosphates/chemistry , Sewage/chemistry , Alum Compounds/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Kinetics , Models, Chemical
7.
Biomaterials ; 308: 122569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626556

ABSTRACT

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Aluminum Oxide , Dendritic Cells , Hepatitis B Surface Antigens , Nanoparticles , Oligodeoxyribonucleotides , Adjuvants, Immunologic/pharmacology , Animals , Nanoparticles/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/metabolism , Aluminum Hydroxide/chemistry , Aluminum Hydroxide/pharmacology , Mice , Mice, Inbred C57BL , Female , Cytokines/metabolism , Alum Compounds/chemistry , Alum Compounds/pharmacology
8.
Mar Pollut Bull ; 202: 116345, 2024 May.
Article in English | MEDLINE | ID: mdl-38583219

ABSTRACT

Chemical washing could be suitable for the remediation of marine sediments contaminated with harmful heavy metals. Considering green and sustainable remediation (GSR), the application of aluminum sulfate (AS) is intended to reduce the costs and environmental impacts. We extracted harmful heavy metals from manganese nodules using an ion exchange mechanism that occurs when AS dissociates in water. AS in the range from 2 % to 5 % was used. The remediation efficiencies using 5 % AS were found to be the highest, at 91.8 % for Ni and ≥ 100 % for other harmful heavy metals. The Pearson's coefficient evaluation showed that increasing elapsed time did not significantly affect the extraction of harmful heavy metals. Pollutants in post-processing products may not cause secondary pollutions if solidification/stabilization and additional treatments are used. Our results can serve as fundamental data for the actual remediation processes using AS not only for deep-sea mining tailings but also contaminated marine sediments.


Subject(s)
Alum Compounds , Environmental Restoration and Remediation , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/analysis , Alum Compounds/chemistry
9.
J Environ Qual ; 53(3): 314-326, 2024.
Article in English | MEDLINE | ID: mdl-38453693

ABSTRACT

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Subject(s)
Alum Compounds , Calcium Sulfate , Phosphorus , Soil , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Soil/chemistry , Phosphorus/analysis , Phosphorus/chemistry , Alum Compounds/chemistry , Fertilizers/analysis , Manure/analysis , Agriculture/methods
10.
Nat Chem Biol ; 20(8): 1012-1021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38225471

ABSTRACT

A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.


Subject(s)
Influenza Vaccines , SARS-CoV-2 , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antigens, Viral/immunology , Antigens, Viral/chemistry , Cross Reactions/immunology , Mice , Epitopes/immunology , Epitopes/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Ebolavirus/immunology , Influenza A virus/immunology , Alum Compounds/chemistry , Epitope Mapping , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry
11.
Water Sci Technol ; 88(12): 3142-3150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38154800

ABSTRACT

This study aims to recover the used coagulants from two water treatment plants via acidification technique. The water treatment sludge (WTS) was acidified with sulfuric acid (H2SO-4) at variable normalities (0.5, 1, 1.5, 2.0 and 2.5 N). The surface morphology and functionalities of both recovered coagulants were analysed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The performance of recovered coagulants was tested for turbidity removal in surface water treatment at different coagulant dosages and pH. It was found that the optimum normality of H2SO4 for recovered alum was 1.5 N, where 66% turbidity removal was recorded. The recovered PAC treated with 1.0 N H2SO4 indicated high turbidity removal percentage, which was 50.5%. The turbidity removal increased with increasing coagulant dosage. More than 80% turbidity removal was achieved with 40 mg/L dosage of recovered alum and recovered PAC. Maximum removal (85%) was observed with 50 mg/L dosage of recovered alum. For commercial coagulant, the turbidity removal was higher, with a difference of up to 6% in favor of recovered alum. The potential reuse of coagulants can be explored in order to reduce the operating costs and promotes the reduction of WTS disposal.


Subject(s)
Sewage , Water Purification , Sewage/chemistry , Alum Compounds/chemistry , Water Purification/methods , Spectroscopy, Fourier Transform Infrared
12.
Proc Natl Acad Sci U S A ; 119(36): e2205983119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037341

ABSTRACT

Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNß therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNß that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.


Subject(s)
Aluminum Hydroxide , Immunotherapy , Interferon Type I , Alum Compounds/chemistry , Aluminum Hydroxide/chemistry , Animals , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Humans , Immunotherapy/methods , Immunotherapy/standards , Interferon Type I/chemistry , Interferon Type I/therapeutic use , Interferon-alpha , Interferon-beta , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice
13.
Biotechnol Lett ; 43(11): 2137-2147, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34491470

ABSTRACT

PURPOSE: Influenza is one of the most important agents of pandemic outbreak causing substantial morbidity and mortality. Vaccination strategies of influenza must be adapted annually due to constant antigenic changes in various strains. Therefore, the present study was conducted to evaluate protective immunity of the conserved influenza proteins. METHODS: For this purpose, three tandem repeats of M2e (3M2e) and NP were separately expressed in E. coli and were purified using column chromatography. Female Balb/c mice were injected intradermally with a combination of the purified 3M2e and NP alone or formulated with Alum (AlOH3) adjuvant in three doses. The mice were challenged by intranasal administration of H1N1 (A/PR/8/34) 2 weeks after the last vaccination. RESULTS: The results demonstrated that recombinant NP and M2e proteins are immunogenic and could efficiently elicit immune responses in mice compared to non-immunized mice. The combination of 3M2e and NP supplemented with Alum stimulated both NP and M2e-specific antibodies, which were higher than those stimulated by each single antigen plus Alum. In addition, the secretion of IFN-γ and IL-4 as well as the induction of lymphocyte proliferation in mice received the mixture of these proteins with Alum was considerably higher than other groups. Moreover, the highest survival rate (86%) with the least body weight change was observed in the mice immunized with 3M2e and NP supplemented with Alum followed by the mice received NP supplemented with Alum (71%). CONCLUSION: Accordingly, this regimen can be considered as an attractive candidate for global vaccination against influenza.


Subject(s)
Alum Compounds/chemistry , Influenza Vaccines , Nucleocapsid Proteins , Recombinant Proteins , Viral Matrix Proteins , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccination , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
14.
Molecules ; 26(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572703

ABSTRACT

In this study, three coagulants (ferromagnetite (F), alum (A), and eggshells (E)) and their hybrids (FA, FE, and FEA) were investigated as possible cost-effective coagulants for the treatment of industrial wastewater. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to characterize the morphological and elemental compositions of the coagulants. The effects of coagulant dosage (10-60 mg/L) and settling time were investigated for the removal of turbidity, color, and total suspended solids. A jar tester (JTL6) operating at conditions of 150 rpm for 2 min (rapid mixing) and 30 rpm for 15 min (slow mixing) was employed. Results from the characterized supernatant showed about 80% removal of the contaminants. The prospects of F were proven to be the most effective as compared to the binary (FA > FE) and the ternary hybridized (FEA) coagulants. At an optimum dosage and settling time of 20 mg/L and 30 min, respectively, the treatability performance of F was clearly proven to be viable for wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification , Alum Compounds/chemistry , Flocculation , Humans , Industrial Waste , Kinetics , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/toxicity
15.
APMIS ; 129(8): 480-488, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33539574

ABSTRACT

The potency of a vaccine highly depends upon the nature of the adjuvant used. There are a variety of ineffective vaccines, such as HIV-1 vaccine candidates, that need to be optimized with new adjuvant formulations to improve vaccine potency and efficacy. Studies show the potency of naloxone (NLX)/alum mixture in the induction of Th1/Th2 response for vaccine. However, other immunologic patterns inducing by this adjuvant and its immunoregulatory effect is unclear. In this regard, the aim of the present study was to investigate the effect of the NLX/alum mixture, as an adjuvant, on cytokine networks and immunoregulatory activity for an HIV-1 polytope vaccine. BALB/c mice were divided into six groups (n = 6) and immunized subcutaneously with 10 µg of the vaccine formulated with NLX/alum, NLX, alum, and Freund's adjuvants. At the same time, the mice in the control groups received an equal volume of PBS or NLX. The lymphocyte proliferation assay was carried out using the BrdU method. ELISA was used to measure the levels of IFN-γ, IL-2, IL-4, IL-10, IL-12, and IL-17 cytokines, total IgG, as well as IgG1 and IgG2a subtypes in serum samples. Our findings showed that mice receiving the NLX/alum-adjuvanted vaccine exhibited increased antibody levels compared with other groups. In addition, there was a considerable difference in the levels of IgG1, IgG2a, IFN-γ, IL-2, IL-10, IL-12, and IL-17 in mice receiving the NLX/alum-adjuvanted vaccine as compared with other groups. The NLX/alum mixture, as an adjuvant, may have a positive effect on the induction of multi-cytokine responses, as well as the increased level of IL-10, showing its higher immunogenicity with a higher immunoregulatory mechanism.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , HIV Infections/immunology , HIV Infections/prevention & control , Naloxone/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/chemistry , Alum Compounds/chemistry , Animals , Antibodies, Viral/immunology , Drug Compounding , Female , HIV Infections/virology , HIV-1/immunology , Humans , Immunization , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukins/genetics , Interleukins/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Naloxone/administration & dosage , Naloxone/chemistry
16.
Int J Biochem Cell Biol ; 132: 105920, 2021 03.
Article in English | MEDLINE | ID: mdl-33421633

ABSTRACT

Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause serious public health problems. The development of a safe and effective vaccine against T. gondii is urgently needed to prevent and control the spread of toxoplasmosis. The aim of this study was to evaluate the immune responses induced by a pcGRA14 + pcROP13 vaccine cocktail in BALB/c mice. All groups were immunized intramuscularly three times at two-week intervals. The production of anti-Toxoplasma gondii lysate antigen (TLA) antibodies, lymphocyte proliferation, serum levels of IFN-γ and IL-4 cytokines and the survival time were monitored after vaccination and challenged with the virulent RH strain of T. gondii. The results showed that immunization with the pcGRA14 + pcROP13 DNA vaccine significantly increased the production of specific IgG antibodies and cytokines against toxoplasmosis. Interestingly, high levels of IgG2a and IFN-γ were found in animals vaccinated with DNA vaccine cocktail. Furthermore, immunized mice challenged with the RH strain of T. gondii showed prolonged survival time when compared to control groups (P <0.05). The present study demonstrates the potential of a DNA cocktail vaccine expressing pcGRA14 and pcROP13 in developing specific immune responses and providing effective protection against T. gondii infection.


Subject(s)
Adjuvants, Immunologic/chemistry , Alum Compounds/chemistry , Protozoan Proteins/genetics , Toxoplasmosis/prevention & control , Vaccines, DNA/chemistry , Vaccines, DNA/immunology , Animals , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Protozoan Proteins/immunology , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasmosis/immunology
17.
ACS Appl Bio Mater ; 4(4): 3614-3622, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014447

ABSTRACT

The use of particulate adjuvants offers an interesting method for enhancing and modulating the immune responses elicited by vaccines. Aluminum salt (Alum) is one of the most important immune adjuvants approved by the Food and Drug Administration for use in humans because of its safety and efficacy, but it lacks the capacity to induce strong cellular and mucosal immune responses. In this study, we designed an antigen delivery system that combines aluminum salts with ß-glucan particles. The ß-glucan-aluminum particles (GP-Al) exhibited a highly uniform size of 2-4 µm and could highly specifically target antigen-presenting cells (APCs) and strongly induce dendritic cell (DC) maturation and cytokine secretion. In vivo studies showed that both WT mice and HBV-Tg mice immunized with hepatitis B surface antigen (HBsAg)-containing GP-Al displayed high anti-HBsAg IgG titers in the serum. Furthermore, in contrast to mice receiving the antigen alone, mice immunized with the particulate adjuvant exhibited IgG2a antibody titers and higher antigen-specific IFN-γ levels in splenocytes. In conclusion, we developed GP-Al microspheres to serve as a hepatitis B vaccine to enhance both humoral and cellular immune responses, representing a safe and promising system for antigen delivery.


Subject(s)
Adjuvants, Immunologic/chemistry , Hepatitis B Vaccines/administration & dosage , Hepatitis B Vaccines/immunology , Immunity, Cellular , Immunity, Humoral , beta-Glucans/chemistry , Alum Compounds/chemistry , Animals , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/pharmacology , Hepatitis B Vaccines/chemistry , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunoglobulin G/blood , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , RAW 264.7 Cells , Saccharomyces cerevisiae/metabolism
18.
Article in English | MEDLINE | ID: mdl-33378253

ABSTRACT

Wastewater reuse has been widely discussed as an essential strategy to minimize the consumption of drinking water for less noble purposes. During biological wastewater treatment, organic matter is converted into a complex matrix containing a variety of soluble organic compounds. The objective of the present study was to evaluate the removal efficiency of the residual organic load in the final effluent from wastewater treatment plant with a conventional activated sludge process by different coagulants and parameters of coagulation-flocculation process, using dissolved organic carbon (DOC) concentration, molecular weight (MW) size distribution by size exclusion chromatography (SEC) coupled to mass spectrometry (MS), and zeta potential (ZP) analyses. The results showed a DOC removal efficiency up to 45% with iron chloride, and of 38% for aluminum sulfate and 31% for PAC coagulants. ZP was also measured during the procedures and authors conclude that the ZP also does not have a determining role in these removals. SEC and MS assessment was able to detect changes on secondary effluent molecular weight distribution profile after effluent coagulation-flocculation, this technique might be a promising tool to understand the composition of effluent organic matter and be helpful to estimate and optimize the performance of wastewater effluents treatment processes.


Subject(s)
Flocculation , Organic Chemicals/analysis , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods , Alum Compounds/chemistry , Biological Oxygen Demand Analysis , Solubility
19.
Molecules ; 25(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317188

ABSTRACT

The present contribution evaluates the methods of degradation and stabilization of alum-containing paper with a focus on the alkaline environment achieved by deacidification procedures. In terms of reviewed subjects, the contribution focuses on alum-rosin sized paper, which is still used as a carrier of knowledge and information; however, it also mentions cellulose itself and other brands of paper. The contribution summarizes the results on the homogeneity of the distribution of alum and rosin in the paper mass and on the paper surface. It provides the knowledge gained in the field of alkaline hydrolysis and oxidation with special regard to transition metal species. It shows the values of alkaline reserves achieved in the main mass-deacidification processes. On the basis of the acquired knowledge, the contribution emphasizes the procedures of paper stabilization. Criteria of "increased mechanical permanence and lifetime prolongation" adopted to evaluate and compare the efficacy of individual mass-deacidification processes were applied and corresponding data are introduced. The contribution also draws attention to the existence of open issues in the area of paper degradation and stabilization.


Subject(s)
Alum Compounds/chemistry , Paper , Alkalies , Cellulose/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Microscopy, Electron, Scanning , Oxidation-Reduction , Resins, Plant/chemistry
20.
Adv Mater ; 32(40): e2004210, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32864794

ABSTRACT

For rapid response against the prevailing COVID-19 (coronavirus disease 19), it is a global imperative to exploit the immunogenicity of existing formulations for safe and efficient vaccines. As the most accessible adjuvant, aluminum hydroxide (alum) is still the sole employed adjuvant in most countries. However, alum tends to attach on the membrane rather than entering the dendritic cells (DCs), leading to the absence of intracellular transfer and process of the antigens, and thus limits T-cell-mediated immunity. To address this, alum is packed on the squalene/water interphase is packed, forming an alum-stabilized Pickering emulsion (PAPE). "Inheriting" from alum and squalene, PAPE demonstrates a good biosafety profile. Intriguingly, with the dense array of alum on the oil/water interphase, PAPE not only adsorbs large quantities of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antigens, but also harbors a higher affinity for DC uptake, which provokes the uptake and cross-presentation of the delivered antigens. Compared with alum-treated groups, more than six times higher antigen-specific antibody titer and three-fold more IFN-γ-secreting T cells are induced, indicating the potent humoral and cellular immune activations. Collectively, the data suggest that PAPE may provide potential insights toward a safe and efficient adjuvant platform for the enhanced COVID-19 vaccinations.


Subject(s)
Adjuvants, Immunologic/chemistry , Viral Vaccines/chemistry , Alum Compounds/chemistry , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Emulsions , HEK293 Cells , Humans , Interferon-gamma/metabolism , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL