Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
J Environ Sci (China) ; 148: 263-273, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095162

ABSTRACT

The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2•-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.


Subject(s)
Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Catalysis , Bismuth/chemistry , Water Purification/methods
2.
Sci Rep ; 14(1): 18433, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117723

ABSTRACT

Electrochemical detection is favorable for the rapid and sensitive determination of heavy metal cadmium. However, the detection sensitivity needs to be further improved, and a portable, low-cost device is needed for on-site detection. Herein, an in-situ bismuth modified pre-anodized screen-printed carbon electrode (SPCE) was developed for Cd2+ determination by square wave anodic stripping voltammetry (SWASV). The in-situ bismuth modification enhances the enrichment of Cd2+, and together with pre-anodization improve the electron transfer rate of electrode, thus enhancing the detection sensitivity. The electrode modification method combines pre-anodization and in-situ bismuth deposition, which is very easy and effective. Furthermore, a self-made PSoC Stat potentiostat coupled with a stirring device was fabricated for portable and low-cost electrochemical detection. After comprehensive optimization, the developed method can reach a testing time of 3 min, a detection limit of 3.55 µg/L, a linear range of 5-100 µg/L, and a recovery rate of 91.7-107.1% in water and rice samples for Cd2+ determination. Therefore, our method holds great promise for the rapid, sensitive and on-site determination of Cd2+ in food samples.


Subject(s)
Bismuth , Cadmium , Electrochemical Techniques , Electrodes , Oryza , Cadmium/analysis , Oryza/chemistry , Bismuth/chemistry , Bismuth/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Water/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Limit of Detection , Food Contamination/analysis
3.
J Appl Oral Sci ; 32: e20230462, 2024.
Article in English | MEDLINE | ID: mdl-39140577

ABSTRACT

OBJECTIVE: Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE: To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY: SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS: At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION: MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.


Subject(s)
Aluminum Compounds , Biocompatible Materials , Calcium Compounds , Cell Proliferation , Cell Survival , Ceramics , Dental Pulp , Drug Combinations , Materials Testing , Oxides , Silicates , Stem Cells , Tooth, Deciduous , Humans , Tooth, Deciduous/drug effects , Silicates/chemistry , Silicates/toxicity , Silicates/pharmacology , Cell Survival/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/toxicity , Stem Cells/drug effects , Time Factors , Oxides/chemistry , Oxides/toxicity , Cell Proliferation/drug effects , Dental Pulp/drug effects , Dental Pulp/cytology , Ceramics/chemistry , Ceramics/toxicity , Aluminum Compounds/chemistry , Aluminum Compounds/toxicity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Analysis of Variance , Reproducibility of Results , Bismuth/chemistry , Bismuth/toxicity , Bismuth/pharmacology , Cells, Cultured , Reference Values , Tetrazolium Salts , Xanthenes/chemistry , Oxazines
4.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39094587

ABSTRACT

Resorbable inferior vena cava (IVC) filters require embedded contrast for image-guided placement and integrity monitoring. We calculated correction factors to account for partial volume averaging of thin nanoparticle (NP)-embedded materials, accounting for object and slice thicknesses, background signal, and nanoparticle concentration. We used phantoms containing polycaprolactone disks embedded with bismuth (Bi) or ytterbium (Yb): 0.4- to 1.2-mm-thick disks of 20 mg ml-1NPs (thickness phantom), 0.4-mm-thick disks of 0-20 mg ml-1NPs in 2 mg ml-1iodine (concentration phantom), and 20 mg ml-1NPs in 0.4-mm-thick disks in 0-10 mg ml-1iodine (background phantom). Phantoms were scanned on a dual-source CT with 80, 90, 100, and 150 kVp with tin filtration and reconstructed at 1.0- to 1.5-mm slice thickness with a 0.1-mm interval. Following scanning, disks were processed for inductively coupled plasma optical emission spectrometry (ICP-OES) to determine NP concentration. Mean and maximum CT numbers (HU) of all disks were measured over a 0.5-cm2area for each kVp. HU was converted to concentration using previously measured calibrations. Concentration measurements were corrected for partial volume averaging by subtracting residual slice background and extrapolating disk thickness to both nominal and measured slice sensitivity profiles (SSP, mm). Slice thickness to agreement (STTA, mm) was calculated by replacing the CT-derived concentrations with ICP-OES measurements and solving for thickness. Slice thickness correction factors improved agreement with ICP-OES for all measured data. Yb corrections resulted in lower STTA than Bi corrections in the concentration phantom (1.01 versus 1.31 STTA/SSP, where 1.0 is perfect agreement), phantoms with varying thickness (1.30 versus 1.87 STTA/SSP), and similar ratio in phantoms with varying background iodine concentration (1.34 versus 1.35 STTA/SSP). All measured concentrations correlated strongly with ICP-OES and all corrections for partial volume averaging increased agreement with ICP-OES concentration, demonstrating potential for monitoring the integrity of thin IVC resorbable filters with CT.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Polyesters/chemistry , Polymers/chemistry , Contrast Media/chemistry , Ytterbium/chemistry , Bismuth/chemistry , Humans , Nanostructures/chemistry , Nanoparticles/chemistry , Image Processing, Computer-Assisted/methods
5.
Anal Chim Acta ; 1317: 342920, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030014

ABSTRACT

BACKGROUND: As a broad-spectrum tetracycline antibiotic, Oxytetracycline (OTC) was widely used in a variety of applications. But, the overuse of OTC had led to the detection of it in food, water and soil, which could present significance risk to human health and cause damage to ecosystem. It was of great significance to develop sensitive detection methods for OTC. Herein, an environmentally friendly photoelectrochemical (PEC) aptasensor was constructed for the sensitive detection of OTC based on CuO-induced BiOBr/Ag2S/PDA (Polydopamine) photocurrent polarity reversal. RESULTS: BiOBr/Ag2S/PDA composites modified electrode not only produced stable initial anodic photocurrent but also provided attachment sites for the aptamer S1 of OTC by the strong adhesion of PDA. On the other hand, CuO loaded OTC aptamer S2 (Cu-S2) was got through Cu-S bonds. After the target OTC was identified on the electrode surface, CuO was introduced to the surface of ITO/BiOBr/Ag2S/PDA through the specific binding of OTC to S2. This identification process formed dual Z-type heterojunctions and resulted in a remarkable reversal of photocurrent polarity from anodic to cathodic. Under optimization conditions, the PEC aptasensor showed a wide linear range (50 fM âˆ¼ 100 nM), low detection limit (1.9 fM), excellent selectivity, stability and reproducibility for the detection of OTC. Moreover, it was successfully used for the analysis of OTC in real samples of tap water, milk and honey, and had the potential for practical application. SIGNIFICANCE: This work developed an environmentally friendly photocurrent-polarity-switching PEC aptasensor with excellent selectivity, reproducibility, stability, low LOD and wide linear range for OTC detection. This sensitive system, which was including BiOBr, Ag2S, PDA and CuO were low toxicity, not only reduced the risk of traditional toxic semiconductors to operators and the environment, but can also be used for the detection of real samples, broadening the wider range of applications for BiOBr, Ag2S, PDA and CuO.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Bismuth , Copper , Electrochemical Techniques , Oxytetracycline , Oxytetracycline/analysis , Copper/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Bismuth/chemistry , Photochemical Processes , Silver Compounds/chemistry , Polymers/chemistry , Electrodes , Animals , Limit of Detection , Indoles/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry
6.
Radiat Prot Dosimetry ; 200(11-12): 1178-1182, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016485

ABSTRACT

Polydimethyl silicone rubber-based polymer composites filled with molybdenum and bismuth were fabricated using simple open mold cast technique. The physical and chemical structure and gamma shielding parameters like attenuation coefficient, half-value layer (HVL) thickness and relaxation length have been investigated for the said novel materials using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and gamma ray spectrometer. XRD study reveals the crystalline nature of the composites. It is evident from FTIR studies that there is no chemical interaction between the polymer matrix and filler particles. The results of attenuation studies reveal that the linear attenuation coefficient increases with addition of Bi and Mo and is found to be 0.653, 1.341 and 1.017, 1.793 and 0.102, 0.152 cm-1 for 1MMB and 2MMB polymer composites at 80, 356 and 662 keV gamma rays, respectively. The HVL thickness of the materials is found to be 1.06, 0.51 and 0.68, 0.38 and 6.73, 4.532 cm for 1MMB (20Mo + 10Bi phr) and 2MMB (40Mo + 20Bi phr) at these energies, respectively. The mass attenuation coefficient of the novel composites 1MMB and 2MMB is found to be higher than the conventional materials like lead and barite for 356 keV gamma rays. In addition, the material is found to be light weight and flexible enabling to be molded in required forms, thus being a substitute for the material lead that is known to be heavy and toxic by nature.


Subject(s)
Bismuth , Molybdenum , Polymers , Polymers/chemistry , Molybdenum/chemistry , Molybdenum/radiation effects , Bismuth/chemistry , Gamma Rays , Radiation, Ionizing , Radiation Protection/methods , Radiation Protection/instrumentation , Materials Testing , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Humans
7.
Radiat Prot Dosimetry ; 200(11-12): 1207-1215, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016515

ABSTRACT

In the present study, we have prepared six glass samples of bismuth borate using the melt-quenching method with the composition (70-x)B2O3-10CaO-20Na2O-xBi2O3; x = 0, 3, 6, 9, 12 and 15 mol%. The density of the prepared glasses was determined using Archimedes principle. The X-ray diffraction patterns provide confirmation of the amorphous nature of the prepared samples, whereas the Fourier transform infrared measurements pointed to the existence of structural units like BO3, BO4, BiO3 and BiO6 within the glass network. An assessment of the optical absorption spectra unveiled that with the increase in the bismuth oxide content, there was a decrease observed in both the direct and indirect band gap energies. Specifically, they decreased from 3.40 to 2.79 eV and from 3.10 to 2.46 eV, respectively. The properties related to gamma ray attenuation, including the mass attenuation coefficient (µm), effective atomic number (Zeff), half-value layer (HVL) and mean free path (MFP), were examined for all the glass samples. This investigation was carried out using the Phy-X/PSD software, covering the energy range from 0.511 to 1.332 MeV. Out of all the samples, Bi-15, featuring the highest Bi2O3 content, demonstrated the highest µm, Zeff, the smallest HVL and MFP. These results suggest that the glass with 15 mol% of Bi2O3 offers the most effective gamma radiation shielding performance. Moreover, the glasses examined in this study exhibit superior radiation shielding characteristics compared with specific concrete types, namely, ordinary concrete, Hematite serpentine concrete and barite concrete, as well as commercial glasses such as RS-360 and RS-253.


Subject(s)
Bismuth , Borates , Gamma Rays , Glass , Radiation Protection , Bismuth/chemistry , Glass/chemistry , Borates/chemistry , Radiation Protection/methods , Calcium/chemistry , Sodium/chemistry , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared
8.
Microbiol Spectr ; 12(8): e0062524, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38980032

ABSTRACT

The ordered mesoporous ZnO was successfully synthesized using the template method in this article, and Bi ions were etched into ZnO to form two-dimensional nanoflower structures of Bi12ZnO20 with NA3SSA as a guiding agent. The crystal structure, morphology, and optical properties of the photocatalyst were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy-dispersive spectrometer(EDS), and ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS). Under illumination conditions, the obtained materials exhibited excellent bactericidal ability against both gram-positive and gram-negative bacteria, as well as effective inhibition against fungi. Among them, the bactericidal effect of Pseudomonas aeruginosa was found to be the most rapid, achieving a sterilization rate of 100% within 30 min of light irradiation. Even after three cycles of antibacterial activity testing, the Bi12ZnO20 material still demonstrated good photocatalytic performance. The nanoflower-shaped materials provide an enhanced fluid adsorption capacity and more active centers for photocatalytic reactions while also improving light absorption capacity, photogenerated electron-hole separation efficiency, and electron transport efficiency. The cytotoxicity assessment of Bi12ZnO20 revealed no significant toxic effects. Therefore, this study presents a nanoflower-shaped material with highly efficient photocatalytic antibacterial properties for applications in production and daily life; it holds significant importance in eliminating harmful bacteria and plays a crucial role in environmental protection. IMPORTANCE: The flower-shaped photocatalytic material Bi12ZnO20, consisting of nanoparticles, was successfully synthesized in this study. Rigorous antibacterial experiments were conducted on various fungi using the material, yielding excellent results. Furthermore, the application of this material for antibacterial treatment of livestock and poultry manure sewage in real-life scenarios demonstrated remarkable efficacy.


Subject(s)
Anti-Bacterial Agents , Bismuth , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Bismuth/chemistry , Bismuth/pharmacology , Catalysis , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Porosity , Light , Fungi/drug effects
9.
ACS Nano ; 18(29): 19232-19246, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996055

ABSTRACT

Despite the superior efficacy of radiotherapy in esophageal squamous cell carcinoma (ESCC), radioresistance by cancer stem cells (CSCs) leads to recurrence, metastasis, and treatment failure. Therefore, it is necessary to develop CSC-based therapies to enhance radiotherapy. miR-339-5p (miR339) is involved in stem cell division and DNA damage checkpoint signaling pathways based on ESCC cohort. miR339 inhibited ESCC cell stemness and enhanced radiation-induced DNA damage by targeting USP8, suggesting that it acts as a potential CSC regulator and radiosensitizer. Considering the limited circulating periods and poor tumor-targeting ability of miRNA, a multifunctional nanoplatform based on bismuth sulfide nanoflower (Bi@PP) is developed to efficiently deliver miR339 and improve radioresistance. Intriguingly, Bi@PP encapsulates more miR339 owing to their flower-shaped structure, delivering more than 1000-fold miR339 into cells, superior to free miR339 alone. Besides being used as a carrier, Bi@PP is advantageous for dynamically monitoring the distribution of delivered miR339 in vivo while simultaneously inhibiting tumor growth. Additionally, Bi@PP/miR339 can significantly enhance radiotherapy efficacy in patient-derived xenograft models. This multifunctional platform, incorporating higher miRNA loading capacity, pH responsiveness, hypoxia relief, and CT imaging, provides another method to promote radiosensitivity and optimize ESCC treatment.


Subject(s)
Bismuth , Esophageal Neoplasms , MicroRNAs , Neoplastic Stem Cells , Sulfides , Bismuth/chemistry , Bismuth/pharmacology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Sulfides/chemistry , Sulfides/pharmacology , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Mice , Radiation Tolerance/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Mice, Nude , Mice, Inbred BALB C , Cell Proliferation/drug effects , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics
10.
J Environ Manage ; 367: 121964, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067335

ABSTRACT

Photoelectrocatalysis (PEC) oxidation technology with the combination of electrocatalysis and photocatalysis is an ideal candidate for treatment of dyeing wastewater containing multifarious intractable organic compounds with high chroma. Constructing high-quality heterojunction photoelectrodes can effectively suppress the recombination of photo-generated carriers, thereby achieving efficient removal of pollution. Herein, a beaded Bi2MoO6@α-MnO2 core-shell architecture with tunable hetero-interface was prepared by simple hydrothermal-solvothermal process. The as-synthesized Bi2MoO6@α-MnO2 had larger electrochemically active surface area, smaller charge transfer resistance and negative flat band potential, and higher separation efficiency of e-/h+ pairs than pure α-MnO2 or Bi2MoO6. It is noteworthy that the as-synthesized Bi2MoO6@α-MnO2 showed Z-scheme heterostructure as demonstrated by the free radical quenching experiments. The optimized Bi2MoO6@α-MnO2-2.5 exhibited the highest degradation rate of 88.64% in 120 min for reactive brilliant blue (KN-R) and accelerated stability with long-term(∼10000s) at the current density of 50 mA cm-2 in 1.0 mol L-1 H2SO4 solution. This study provides valuable insights into the straightforward preparation of heterogeneous electrodes, offering a promising approach for the treatment of wastewater in various industrial applications.


Subject(s)
Manganese Compounds , Wastewater , Wastewater/chemistry , Catalysis , Manganese Compounds/chemistry , Oxides/chemistry , Bismuth/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Electrochemical Techniques , Molybdenum
11.
Anal Chem ; 96(32): 13086-13095, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39072614

ABSTRACT

The OPECT biosensing platform, which connects optoelectronics and biological systems, offers significant amplification and more possibilities for research in biological applications. In this work, a homogeneous organic photoelectrochemical transistor (OPECT) biosensor based on a Bi2S3/Bi2MoO6 heterojunction was constructed to detect METTL3/METTL14 protein activity. The METTL3/METTL14 complex enzyme was used to catalyze adenine (A) on an RNA strand to m6A, protecting m6A-RNA from being cleaved by an E. coli toxin (MazF). Alkaline phosphatase (ALP) catalyzed the conversion of Na3SPO3 to H2S through an enzymatic reaction. Due to the adoption of the strategy of no fixation on the electrode, the generated H2S was easy to diffuse to the surface of the ITO electrode. The Bi2S3/Bi2MoO6 heterojunction was formed in situ through a chemical replacement reaction with Bi2MoO6, improving photoelectric conversion efficiency and realizing signal amplification. Based on this "signal on" mode, METTL3/METTL14 exhibited a wide linear range (0.00001-25 ng/µL) between protein concentration and photocurrent intensity with a limit of detection (LOD) of 7.8 fg/µL under optimal experimental conditions. The applicability of the developed method was evaluated by investigating the effect of four plasticizers on the activity of the METTL3/METTL14 protein, and the molecular modeling technique was employed to investigate the interaction between plasticizers and the protein.


Subject(s)
Biosensing Techniques , Bismuth , Electrochemical Techniques , Methyltransferases , Molybdenum , Sulfides , Methyltransferases/metabolism , Methyltransferases/chemistry , Bismuth/chemistry , Sulfides/chemistry , Molybdenum/chemistry , Photochemical Processes , Humans , Transistors, Electronic , Adenosine/analysis , Adenosine/analogs & derivatives
12.
Chemosphere ; 363: 142746, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969223

ABSTRACT

Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.


Subject(s)
Bismuth , Vanadates , Vanadium , Water Pollutants, Chemical , Water Purification , Catalysis , Vanadates/chemistry , Water Pollutants, Chemical/chemistry , Vanadium/chemistry , Water Purification/methods , Bismuth/chemistry , Coloring Agents/chemistry , Wastewater/chemistry , Photochemical Processes
13.
Chemosphere ; 363: 142882, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025315

ABSTRACT

Efficient separation of actinide elements from molten salts employed in pyroprocessing can significantly diminish the radiological hazards and oversight duration associated with spent nuclear fuel storage. The lanthanum content of waste salts is very high compared to actinides, leading to the co-electrodeposition of both groups of elements for conventional electrochemical techniques. Due to the difficulty in separating the two groups of elements, the feasibility of the density-based separation using liquid bismuth and intermetallics was explored. Hafnium was used as a stand-in for actinide elements with physical properties mirroring those of actinide-laden Bi-Hf intermetallics. Conversely, cerium was chosen to represent lanthanides. This study delved into the formation and spatial distribution of bismuth intermetallics under varying concentration ratios and cooling durations. Comprehensive characterization was achieved using scanning electron microscopy and energy-dispersive spectrometry. The analysis showed that Bi-Ce particles were formed and distributed in the upper layer of the Bi ingot, and Bi-(Ce, Hf) particles containing both Ce and Hf in the lower layer. The findings underscore the viability of density-based separation while highlighting the intricacies related to intermetallic coprecipitation. Continued investigations are essential to fully harness the potential of density-based separation.


Subject(s)
Bismuth , Cerium , Cerium/chemistry , Bismuth/chemistry , Hafnium/chemistry , Feasibility Studies , Microscopy, Electron, Scanning
14.
Luminescence ; 39(7): e4822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39019842

ABSTRACT

Holmium (Ho3+)-doped boro-bismuth-germanate glasses having the chemical composition (30-x)B2O3 + 20GeO2 + 20Bi2O3 + 20Na2O + 10Y2O3 + xHo2O3, where x = 0.1, 0.5, 1.0, and 2.0 mol% were prepared by melt-quenching technique. The prepared glasses were examined for thermal, optical, vibrational, and photoluminescent properties. The prepared glasses were found to be thermally very stable. The optical bandgap and Urbach energies of 0.1 mol% Ho2O3-doped boro-bismuth-germanate glass were calculated to be 3.3 eV and 377 MeV, respectively, using the absorption spectrum. The Judd-Ofelt analysis was performed on the 0.1 mol% Ho2O3-doped glass and compared the obtained parameters with literature. The branching ratio (ß) and emission cross-section (σem) of the green band were determined to be 0.7 and 0.24 × 10-20 cm2, respectively. Under 450 nm excitation, a strong green emission around 550 nm was observed and assigned to the (5S2 + 5F4) → 5I8 (Ho3+) transition. Upon an increase of Ho2O3 content from 0.1 to 2.0 mol%, the intensities of all observed emission bands as well as decay time of the (5S2 + 5F4) → 5I8 transition have been decreased gradually. The reasons behind the decrease in emission intensity and decay time were discussed. The strong green emission suggests that these glasses may be a better option for display devices and green emission applications.


Subject(s)
Bismuth , Germanium , Glass , Holmium , Luminescence , Holmium/chemistry , Glass/chemistry , Germanium/chemistry , Bismuth/chemistry , Vibration , Luminescent Measurements , Optical Phenomena
15.
J Nanobiotechnology ; 22(1): 408, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992664

ABSTRACT

BACKGROUND: Ovarian cancer (OC) has the highest fatality rate among all gynecological malignancies, necessitating the exploration of novel, efficient, and low-toxicity therapeutic strategies. Ferroptosis is a type of programmed cell death induced by iron-dependent lipid peroxidation and can potentially activate antitumor immunity. Developing highly effective ferroptosis inducers may improve OC prognosis. RESULTS: In this study, we developed an ultrasonically controllable two-dimensional (2D) piezoelectric nanoagonist (Bi2MoO6-MXene) to induce ferroptosis. A Schottky heterojunction between Bi2MoO6 (BMO) and MXene reduced the bandgap width by 0.44 eV, increased the carrier-separation efficiency, and decreased the recombination rate of electron-hole pairs under ultrasound stimulation. Therefore, the reactive oxygen species yield was enhanced. Under spatiotemporal ultrasound excitation, BMO-MXene effectively inhibited OC proliferation by more than 90%, induced lipid peroxidation, decreased mitochondrial-membrane potential, and inactivated the glutathione peroxidase and cystathionine transporter protein system, thereby causing ferroptosis in tumor cells. Ferroptosis in OC cells further activated immunogenic cell death, facilitating dendritic cell maturation and stimulating antitumor immunity. CONCLUSION: We have succeeded in developing a highly potent ferroptosis inducer (BMO-MXene), capable of inhibiting OC progression through the sonodynamic-ferroptosis-immunogenic cell death pathway.


Subject(s)
Ferroptosis , Immunogenic Cell Death , Ovarian Neoplasms , Ferroptosis/drug effects , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Immunogenic Cell Death/drug effects , Mice , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Bismuth/pharmacology , Bismuth/chemistry
16.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954124

ABSTRACT

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Subject(s)
Anti-Bacterial Agents , Oxidation-Reduction , Tetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Catalysis , Wastewater/chemistry , Bismuth/chemistry , Graphite/chemistry , Nitrogen Compounds/chemistry , Tungsten Compounds/chemistry , Photolysis , Water Purification/methods , Sewage/chemistry
17.
Environ Sci Pollut Res Int ; 31(35): 48103-48121, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39017869

ABSTRACT

We have adopted a novel CeO2/Bi2MoO6/g-C3N4-based ternary nanocomposite that was synthesized via hydrothermal technique. The physiochemical characterization of as-prepared samples was examined through various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy TEM, photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. In addition, the photocatalytic performance was carried out by degradation of Rhodamine B dye under visible light irradiation using this nanocatalyst. The ternary nanocomposite achieved 94% of the degradation efficiency within 100 min which is higher than the pristine and binary composites under the predetermined condition pH = 7, Rhodamine B dye = 5 mg/L, and catalyst concentration = 150 mg/L. The experimental synergetic effect of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite has been ascribed to the interfacial charge carrier migration between CeO2, Bi2MoO6, and g-C3N4. The optical absorption range of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite was enhanced, and the band gap was reduced up to 2.2 eV. In addition, scavenger trapping experiment proves that the super oxide anions (O2-.) and photogenerated holes are the major active species. The reusability and stability experiment proved the CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite keeps good durability during the photocatalytic degradation process after the five successive cycles. Furthermore, based on the results, the charge carrier transfer photocatalytic mechanism was also discussed. This CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite may offer the cheapest material and extend the great opportunity for clean and environmental remediation approach under the visible light irradiation.


Subject(s)
Cerium , Rhodamines , Rhodamines/chemistry , Cerium/chemistry , Catalysis , Nanospheres/chemistry , Bismuth/chemistry , Environmental Pollutants/chemistry , Nanocomposites/chemistry , Molybdenum/chemistry
18.
J Environ Manage ; 366: 121928, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029171

ABSTRACT

Constructing a photocatalytic membrane and photo-Fenton reaction coupling system is a novel strategy to enhance the photocatalytic activity of the membrane and eliminate the problem of membrane contamination. Herein, a g-C3N4/Bi2MoO6/PVDF photocatalytic membrane was prepared using a tannic acid-assisted in-situ deposition method. The membrane was characterized by three advantages of photocatalytic, self-cleaning, and antibacterial properties. Under the photo-Fenton-like conditions, the membrane had superior photodegradation efficiency of 90.7% for tetracycline, one of the main antibiotic contaminants in the China's aquatic system. Moreover, the membrane had excellent photo-Fenton self-cleaning ability, its flux recovery rate was up to 96%-98% after the self-cleaning process. Photoluminescence spectra, diffuse UV-visible spectrum, transient photocurrent responses, and electrochemical AC impedance spectrum results show that the heterojunction structure formed by g-C3N4 and Bi2MoO6 could improve the separation efficiency of photogenerated electrons-hole pairs. Electron spin resonance spectroscopy confirmed the photo-electrons facilitated the formation of hydroxyl radical (·OH) in the existence of H2O2, which enhanced tetracycline degradation. Moreover, the superior photo-Fenton self-cleaning performance, which mainly relied on the active free radicals produced by the photo-Fenton-like membrane to remove dirt on the membrane surface or in the membrane pore channel. Our results may shed new light on the development of promising photocatalytic membrane systems by coupling with photo-Fenton-like processes, and facilitate their applications for wastewater treatment.


Subject(s)
Anti-Bacterial Agents , Bismuth , Wastewater , Wastewater/chemistry , Anti-Bacterial Agents/chemistry , Bismuth/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Polyvinyls/chemistry , Iron/chemistry , Photolysis , Membranes, Artificial , Tetracycline/chemistry , Catalysis , Fluorocarbon Polymers , Molybdenum
19.
Anal Chim Acta ; 1312: 342765, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834279

ABSTRACT

The sensitive, accurate and rapid detection of carbohydrate antigen 125 (CA125) is essential for the early diagnosis and clinical management of ovarian cancer, but there is still challenge. Herein, a photoelectrochemical (PEC) immunosensor based on CdS/Bi2S3/NiS ternary sulfide heterostructured photocatalyst was presented for the detection of CA125. The CdS/Bi2S3/NiS was synthesized by a one-step hydrothermal approach. The heterojunction comprising of CdS and Bi2S3 could separate photogenerated carriers, the introduced narrow bandgap NiS could act as electron-conducting bridge to facilitate the transfer of interfacial photogenerated electrons, thereby improving the photoelectric conversion efficiency. Due to their synergistic effect, the photocurrent response produced by the composite was up to 14.6 times of pure CdS. On the basis, a PEC immunosensor was constructed by introducing the CA125 antibody through thioglycolic acid linkage. It was found that the resulting immunosensor showed good performance. Under the optimized conditions, its linear detection range was as wide as 1 pg mL-1-50 ng mL-1, and the detection limit was low to 0.85 pg mL-1. Furthermore, we experimentally tested its anti-interference, stability and reproducibility, and satisfactory results were achieved. The practicable feasibility of the sensor was confirmed by testing serum sample. Thus this work provided a simple, fast and enough sensitive approach for CA125 monitoring.


Subject(s)
Bismuth , CA-125 Antigen , Cadmium Compounds , Electrochemical Techniques , Sulfides , Cadmium Compounds/chemistry , Sulfides/chemistry , Humans , Electrochemical Techniques/methods , CA-125 Antigen/blood , CA-125 Antigen/analysis , Bismuth/chemistry , Limit of Detection , Immunoassay/methods , Biosensing Techniques/methods
20.
Environ Monit Assess ; 196(7): 625, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884667

ABSTRACT

In the current work, Response Surface Methodology (RSM)-a statistical method-is used to optimize procedures like photocatalysis with the least amount of laboratory testing. However, to determine the most effective model for achieving the maximum rate of removal efficiency, the Response Surface Methodology was employed. The Ba-doped BiFeO3 photocatalyst was synthesized by the co-precipitation method, and its intrinsic properties were investigated by utilizing a range of spectroscopic techniques, such as FESEM, EDX, XRD, FTIR, and UV-vis. Herein, four independent factors such as, pH, contact time, pollutant concentration, and catalyst dosage were chosen. The results revealed that under acidic conditions with a contact duration of 2 min, a moderate catalyst dosage, and higher pollutant concentration, a degradation rate of 89.8% was achieved. The regression coefficient (R2) and probability value (P) were determined to be 0.99551 and 0.0301, respectively, therefore confirming the excellent fit of the RSM model. Furthermore, this research investigated the potential photocatalytic degradation mechanisms of cefixime, demonstrating that the removal efficiency of cefixime is greatly influenced by the functional parameters.


Subject(s)
Cefixime , Nanostructures , Water Pollutants, Chemical , Catalysis , Nanostructures/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Cefixime/chemistry , Bismuth/chemistry , Photolysis , Photochemical Processes , Ferric Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL