Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.682
Filter
1.
J Vis Exp ; (209)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39141544

ABSTRACT

Measuring greenhouse gas (GHG) fluxes and pools in ecosystems are becoming increasingly common in ecological studies due to their relevance to climate change. With it, the need for analytical platforms adaptable to measuring different pools and fluxes within research groups also grows. This study aims to develop a procedure to use portable optical spectroscopy-based gas analyzers, originally designed and marketed for gas flux measurements, to measure GHG concentrations in aqueous samples. The protocol involves the traditional headspace equilibration technique followed by the injection of a headspace gas subsample into a chamber connected through a closed loop to the inlet and outlet ports of the gas analyzer. The chamber is fabricated from a generic mason jar and simple laboratory supplies, and it is an ideal solution for samples that may require pre-injection dilution. Methane concentrations measured with the chamber are tightly correlated (r2 > 0.98) with concentrations determined separately through gas chromatography-flame ionization detection (GC-FID) on subsamples from the same vials. The procedure is particularly relevant for field studies in remote areas where chromatography equipment and supplies are not readily available, offering a practical, cheaper, and more efficient solution for measuring methane and other dissolved greenhouse gas concentrations in aquatic systems.


Subject(s)
Ecosystem , Methane , Methane/analysis , Spectrum Analysis/methods , Spectrum Analysis/instrumentation , Chromatography, Gas/methods , Chromatography, Gas/instrumentation
2.
J Chromatogr A ; 1730: 465039, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38901296

ABSTRACT

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.


Subject(s)
Chromatography, Gas , Time Factors , Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Pressure , Reproducibility of Results , Alkanes/analysis , Alkanes/chemistry
3.
J Chromatogr A ; 1729: 465036, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38843573

ABSTRACT

In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 µm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.


Subject(s)
Printing, Three-Dimensional , Stainless Steel , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Stainless Steel/chemistry , Equipment Design , Reproducibility of Results , Alkanes/analysis , Alkanes/isolation & purification , Alkanes/chemistry , Alcohols/analysis , Alcohols/chemistry , Alcohols/isolation & purification
4.
J Breath Res ; 18(4)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38876091

ABSTRACT

The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (µTD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmarkµTD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h att= 60, 120, 200, 280, and 360 min. The breath samples (120 cm3) were pre-concentrated in theµTD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed byα-pinene andß-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient ofR2= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated thatµTD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.


Subject(s)
Benchmarking , Breath Tests , Mentha piperita , Humans , Breath Tests/methods , Breath Tests/instrumentation , Female , Male , Adult , Middle Aged , Aged , Ion Mobility Spectrometry/methods , Ion Mobility Spectrometry/standards , Young Adult , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Chromatography, Gas/standards
5.
J Agric Food Chem ; 72(17): 9523-9554, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640191

ABSTRACT

Gas chromatography-olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.


Subject(s)
Odorants , Olfactometry , Odorants/analysis , Olfactometry/methods , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Humans , Smell , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
6.
J Chromatogr A ; 1722: 464869, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38604057

ABSTRACT

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.


Subject(s)
Helium , Pressure , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Helium/chemistry , Hydrodynamics , Carbon Dioxide/chemistry , Adsorption
7.
São Paulo; s.n; s.n; 2024. 103 p tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1563094

ABSTRACT

Os sintomas depressivos durante a gravidez e o período pós-parto (PP) são prevalentes e podem ter implicações profundas para o bem-estar materno e infantil. Evidências emergentes sugerem que a microbiota intestinal pode desempenhar um papel na regulação do humor. Este estudo explora a relação entre a composição da microbiota intestinal e os sintomas depressivos em mulheres grávidas e no pós-parto com diferentes intensidade de sintomas. Foram recrutadas gestantes que faziam acompanhamento nos hospitais HCFMUSP e HU- USP. A partir do preenchimento do questionário de Escala de Edimburgo as participantes foram triadas para os grupos de sintomas ausentes ou leves (AL) e sintomas graves ou moderados (MG). Para a análise de microbiota, as participantes forneceram amostras de fezes em três momentos diferentes. Uma no terceiro trimestre de gestação (G) e duas no período pós-parto. A primeira amostra deste período foi coletada durante a internação do pós-parto (P1), e a segunda durante a consulta de retorno um mês após o parto (P2). A composição da microbiota intestinal foi analisada usando técnicas de sequenciamento de alto rendimento e os ácidos graxos de cadeia curta (AGCC) foram quantificados por cromatografia gasosa acoplada à espectrometria de massas (GC-MS). Análises bioinformáticas e estatísticas foram realizadas utilizando os softwares QIIME 2 (2022.2) e R (4.3.1) para identificar possíveis associações entre a composição da microbiota intestinal e a gravidade dos sintomas depressivos. Os resultados indicam que a familia Enterobacteriacea aparece com maior abundância nas mulheres do grupo MG, especialmente durante o período P1 (p<0,05) e que há uma diminuição significativa (p<0,05) de sintomas depressivos nas participantes do grupo MG desde sua triagem até o fim do acompanhamento do estudo, indicando que conduta terapêutica está sendo eficaz. Apesar de não ter sido estabelecida diferença estatística na abundância relativa da microbiota entre os grupos durante a gestação e nos índices de alfa e beta diversidade entre grupos e entre os períodos, é possivel observar uma tendência de mudança de microbiota ao longo do tratamento com aumento do gênero Bifidobacterium, diminuição da familia Enterobacteraceae e é possivel observar uma aparente correlação inversa entre a diminuição da intensidade de sintomas depressivos e o aumento da abundância dos gêneros Bifidobacterium e Clostridium, além do aumento das concentrações de AGCC. Em conclusão, a composição da microbiota intestinal parece ser influenciada pela gravidade dos sintomas depressivos em mulheres grávidas e no pós-parto. Pesquisas adicionais são necessárias para explorar a relação entre a microbiota intestinal e a depressão perinatal e determinar as implicações clínicas dessas descobertas para a saúde materna e infantil.


Depressive symptoms during pregnancy and the postpartum period (PP) are prevalent and can have profound implications for maternal and infant well-being. Emerging evidence suggests that the gut microbiota may play a role in mood regulation. This study explores the relationship between gut microbiota composition and depressive symptoms in pregnant and postpartum women with different symptom severities. A cohort of pregnant women were recruited from HCFMUSP and HU-USP. Participants completed standardized depression assessment tools and were allocate in groups of absent or mild depressive symptoms (AL) and moderate or severe depressive symptoms (MG) and provided stool samples in three different time periods. One at the third gestation trimester (G) and two at the postpartum period. The first sample from this period was collected during postpartum hospitalization(P1), and the second during the onemonth postpartum follow-up appointment (P2). Their gut microbiota composition was analyzed using high-throughput sequencing techniques and Gas chromatography mass spectrometry (GS-MS) for quantification of short-chain fatty acids (SCFAs). Bioinformatic and statistical analyses were performed using softwares QIIME 2 (2022.2) and R (4.3.1) to identify potential associations between gut microbiota composition and depressive symptom severity. Findings that the Enterobacteriaceae family appears more abundantly in women of the MG group, especially during period P1 (p<0.05), and that there is a significant decrease (p<0.05) in depressive symptoms among the participants of the MG group from their screening to the end of the study follow-up, suggesting that the therapeutic approach is effective. Although no statistical differences in alpha and beta diversity indices were established between groups and across periods, it is possible to observe a trend of microbiota change during the treatment, with an increase in the Bifidobacterium genus, a decrease in the Enterobacteriaceae family, and an apparent inverse correlation between the reduction in the intensity of depressive symptoms and the increased abundance of the Bifidobacterium, Clostridium, and Dorea genera, as well as an increase in the concentrations of SCFAs. In conclusion, composition of gut microbiota appears to be influenced by the severity of depressive symptoms in pregnant and postpartum women. Further research is warranted to explore links between gut microbiota and perinatal depression and to determine the clinical implications of these findings for maternal and infant health


Subject(s)
Humans , Female , Pregnancy , Pregnancy , Depression/pathology , Gastrointestinal Microbiome/immunology , Obstetrics/classification , Referral and Consultation/classification , Mass Spectrometry/methods , Bifidobacterium/immunology , Chromatography, Gas/instrumentation , Hospitals/classification , Infant Welfare/classification , Gas Chromatography-Mass Spectrometry/methods , Maternal Welfare/classification
8.
J Sep Sci ; 45(1): 94-112, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34897986

ABSTRACT

This review is an overview of the recent advances of gas chromatography in essential oil analysis; in particular, it focuses on both the new stationary phases and the advanced analytical methods and instrumentations. A paragraph is dedicated to ionic liquids as gas chromatography stationary phases, showing that, thanks to their peculiar selectivity, they can offer a complementary contribution to conventional stationary phases for the analysis of complex essential oils and the separation of critical pairs of components. Strategies to speed-up the analysis time, thus answering to the ever increasing request for routine essential oils quality control, are also discussed. Last but not least, a paragraph is dedicated to recent developments in column miniaturization in particular that based on microelectromechanical-system technology in a perspective of developing micro-gas chromatographic systems to optimize the energy consumption as well as the instrumentation dimensions. A number of applications in the essential oil field is also included.


Subject(s)
Chromatography, Gas/methods , Oils, Volatile/chemistry , Plant Oils/chemistry , Chromatography, Gas/instrumentation , Chromatography, Gas/trends , Ionic Liquids/chemistry , Molecular Structure
9.
J Chromatogr A ; 1647: 462144, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33957352

ABSTRACT

This work highlights the effect of the stationary phase coating process on the separation efficiency of gas chromatography microcolumns. The stationary phase coating quality was characterized by three different bis(trifluoromethylsulfonyl)imide (NTf2) anion based ionic liquids. The ionic liquids containing NTf2 anion are used for gas chromatography due to their high temperature stability. In this work, the chemical and physical approaches of column deactivation as well as the temperature treatment were evaluated by separating a mixture of 20 organic components and saturated alkanes. The results show that higher oven temperature treatment provides higher efficiency while losing a bit of peak symmetry. The thermal treated 1-butylpyridinum bis(trifluoromethylsulfonyl) imide [BPY][NTf2] stationary phase at 240°C demonstrated as high as 8300 plates per meter for naphthalene. This was a 5-fold increase in separation efficiency in comparison to those of the columns treated at 200°C. Albeit being within acceptable ranges, the peak tailing degraded from 1.17 to 1.46 for naphthalene when the processing temperature for coating increased. Both chemical and physical deactivation process increased separation efficiencies and peak resolution.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Ionic Liquids/chemistry , Alkanes/analysis , Alkanes/isolation & purification , Anions/chemistry , Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Temperature
10.
Crit Rev Anal Chem ; 51(2): 183-202, 2021.
Article in English | MEDLINE | ID: mdl-31920099

ABSTRACT

Compared to one-dimensional gas chromatography, comprehensive two-dimensional gas chromatography (GC × GC) method development is significantly more complex because more method development choices need to be made and because of the complex interplay of the primary and secondary parameters; the individual dimensions cannot be optimized separately. Also, optimization is restricted by requirements such as the modulation criterion and upper temperature limits of the individual columns. In general, the internal diameter of the primary column is larger than the internal diameter of the secondary column which complicates the optimization and leads to sub-optimal flow settings, column loadability issues and indirectly a reduction of the overall separation efficiency. In this review, papers concerning method development for comprehensive two-dimensional gas chromatography (GC × GC) are discussed and general guidelines are proposed with the focus on selecting the GC × GC instrumental set-up and column-set and optimization of the GC × GC settings.


Subject(s)
Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Limit of Detection , Microfluidics , Siloxanes/chemistry , Temperature
11.
J Appl Lab Med ; 5(2): 300-310, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32445388

ABSTRACT

BACKGROUND: Rapid identification and quantification of toxic alcohols and ethylene glycol is imperative for appropriate treatment. Clinical laboratories frequently rely on direct injection gas chromatography (GC) methods, but these methods require inlet maintenance and multiple GC systems. To overcome these challenges, we developed a single-column headspace GC method for both toxic alcohols and glycols that streamlines patient sample analysis for toxic alcohol ingestion. METHODS: Optimal parameters for nonderivatized (volatile) and derivatized (glycol) plasma samples were determined using a 7890 A headspace sampler, an Agilent 7697 A GC system, a DB-200 column, and a flame ionization detector. Limit of Quantification (LoQ), linearity, imprecision, carry-over, method comparison, and interference studies were performed using quality control materials and prepared plasma samples. RESULTS: Our volatile method is linear to 3000 mg/L (ethanol) with LoQ concentrations below 20 mg/L (ethanol). The glycol method is linear to 2000 mg/L (ethylene glycol) with LoQ concentrations below 40 mg/L (ethylene glycol). Total assay impression ranged from 1.7% for ethanol to 13.3% for propylene glycol. Both methods were free of sample carryover and compared favorably with a similar clinical method at an outside laboratory. Propionic acid, an accumulating metabolite in methylmalonic acidemia that interferes with ethylene glycol identification by a different method, did not interfere with the ethylene glycol method reported here. CONCLUSIONS: Our single-column headspace GC method provides reliable, robust, and rapid identification and quantification of commonly encountered toxic alcohols. Clinical laboratories relying on direct injection Gas Chromatography (GC) for toxic alcohol analysis face challenges including frequent inlet maintenance, sample carryover, or the need for separate GC systems for volatile and glycol analysis. We summarize our development and optimization of two headspace GC methods for nonderivatized (volatile) and derivatized (glycol) plasma samples that use a single DB-200 analytical column. These methods are comparable to other GC methods, not prone to sample carryover, eliminate the need for multiple GC systems or columns, and are readily applicable to other laboratories that provide toxic alcohol analysis.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Ethanol/blood , Calibration , Chromatography, Gas/standards , Ethanol/analysis , Ethylene Glycol/analysis , Ethylene Glycol/blood , Glycols/analysis , Humans , Quality Control , Reference Standards , Reproducibility of Results
12.
Rev Sci Instrum ; 91(3): 034101, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32260018

ABSTRACT

We present a fast gas chromatographic system that can be used as a second dimension in comprehensive two-dimensional (supercritical fluid × gas) chromatography (SFC × GC). The temperature of the short (1 m long) capillary column is controlled by a resistively heated coaxial stainless-steel tube. The electrical resistance and, therefore, temperature of the stainless-steel tube are measured by continuous monitoring of the current/voltage ratio. Highly repeatable heating rates of up to 2100 °C min-1 (35 °C s-1) are obtained, which should be high enough for the most demanding fast chromatograms. To reduce the cooling time between temperature programs, the column is cooled by injecting evaporating carbon dioxide into the space between the coaxial heater and the column. This gives cooling rates of 5100 °C min-1 (85 °C s-1), which allows quick succession of temperature programs. More repeatable heating profiles with stable GC retention times together with faster cooling are significant improvements on previous SFC × GC systems. Cycle times of four gas chromatograms per minute could readily be achieved, which allows efficient coupling to high-resolution stop-flow SFC in the first dimension. We demonstrate the fast chromatograph by separating fatty acid methyl esters, yielding information that would be useful in the food and biodiesel industries.


Subject(s)
Chromatography, Supercritical Fluid/instrumentation , Hot Temperature , Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Chromatography, Supercritical Fluid/methods
13.
Anal Sci ; 36(6): 739-743, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-31932522

ABSTRACT

A clear and positive correlation between the CO2 concentration and the blood-sugar level has been observed via a non-invasive and time-dependent monitoring of CO2 concentration from human breath, which is carried out by using a home-made gas chromatography (GC)/milli-whistle compact analyzer. The time-dependent sampling of the CO2 concentration correlated between 5.0 to 5.6% (1% = 104 ppm) in accordance with blood-sugar level variations of 80 to 110 mg/dL. The analytical method results in a rapid, continuous and non-invasive determination of blood-sugar level via measurement of the CO2 concentration exhaled from the lungs.


Subject(s)
Breath Tests , Carbon Dioxide/blood , Sugars/blood , Chromatography, Gas/instrumentation , Humans , Time Factors
14.
J Chromatogr A ; 1614: 460737, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31831145

ABSTRACT

This paper reports the development of a stationary phase thickness gradient gas chromatography (GC) column that enables analyte peak focusing and improves separation resolution. Theoretical analysis and simulation demonstrate focusing via a positive thickness gradient, i.e., the stationary phase thickness increases along the column. This effect was experimentally verified by coating a 5 m long capillary column with a film thickness varying from 34 nm at the column inlet to 241 nm at the column outlet. The column was analyzed in forward (thin to thick) and backward (thick to thin) modes and compared to a uniform thickness column with a thickness of 131 nm, using alkanes ranging from C5 to C16 and aromatics. Comparison of resolutions between forward mode and the uniform thickness column demonstrated an overall focusing rate (i.e., improvement in peak capacity) of 11.7% on alkanes and 28.2% on aromatics. The focusing effect was also demonstrated for isothermal room temperature separation of highly volatile compounds and temperature programmed separation with different ramping rates. In all cases, peak capacities from forward mode separations are higher than those from other modes, indicating the ability of a positive thickness gradient to focus analyte peaks. This thickness gradient technique can therefore be broadly applied to various stationary phases and column types as a general method for improving GC separation performance.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, Gas/instrumentation , Alkanes/chemistry , Temperature
15.
J Chromatogr A ; 1609: 460488, 2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31519408

ABSTRACT

We report the discovery, preliminary investigation, and demonstration of a novel form of differential flow modulation for comprehensive two-dimensional (2D) gas chromatography (GC×GC). Commercially available components are used to apply a flow of carrier gas with a suitable applied auxiliary gas pressure (Paux) to a T-junction joining the first (1D) and second (2D) dimension columns. The 1D eluate is confined at the T-junction, and introduced for 2D separation with a cyclic rhythm, dependent upon the relationship of the modulation period (PM) to the pulse width (pw), where pw is defined as the time interval when the auxiliary gas flow at the T-junction is off. We refer to this flow modulation technique as "dynamic pressure gradient modulation" (DPGM) since a pressure gradient oscillates with the PM along the 1D and 2D column ensemble providing temporary stop-flow conditions and fast 2D flow rates, resulting in 100% duty cycle and full modulation. A 90-component test mixture was used to evaluate the technique with a pw of 60 ms and a PM of 750 ms. The resulting peaks were narrow, with 2Wb ranging from about 20-180 ms. With an average 1Wb of 3 s and a 2nc of 10, a 2D peak capacity, nc,2D, for the 25 min separation was 5000. The detector response enhancement factor (DREF) is reported, defined as the peak height of the highest modulated 2D peak divided by the unmodulated 1D peak height (DREF = 2h/1h). The DREF ranged from about 7-87, depending on the 1Wb and 2Wb for a given analyte. A diesel sample was analyzed to demonstrate performance with a complex sample. Based upon the average 1Wb of 5 s and an average 2Wb of 168 ms, a nc,2D of 8640 was obtained for the 60 min diesel separation. Finally, the modulation principle was investigated as a function of PM, pw, and the volumetric flow rates, 1F and 2F. The measured 2Wb correlate well with the theoretical 2D injected width, given by 2Winj = (1F/2F) ·PM. However, the relevant 1F appears to be dictated by the 1D flow rate when no pressure is applied (during the pw interval), instead of 1F being the average flow rate on 1D (defined by the 1D dead time). The findings provide strong evidence for a differential flow modulation mechanism.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Pressure
16.
J Chromatogr A ; 1609: 460460, 2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31445802

ABSTRACT

Fast gas chromatography that leverages the high chromatographic efficiency of narrow bore capillary column technology and temperature programming was successfully integrated with a third-generation low void-volume, 3D-printed two-stage microreactor. Effective management of extra-column effect and the capability to perform post-column backflushing were achieved with the incorporation of a recently commercialized, electronically controlled pneumatic switching device and a deactivated metal three-way microdevice. With this configuration, narrow bore capillary columns having internal diameters between 0.10 and 0.15 mm can be employed to produce chromatographic peaks in the domain of fast gas chromatography, with peak widths at half-height ranging from 0.42 s to 0.92 s for probe compounds having k over a range from 1.7 for toluene to 60 with the last analyte (nC44) eluted in less than 12 min. The carbon independent response capability of the 3D-printed microreactor affords unique and advantaged differentiators, for instance, conducting measurement of the target analytes using one single carbon-containing compound for calibration with an acceptable accuracy of ±10%, achieving a higher degree of accuracy by eliminating the need for multi-level and multi-compound calibration, and improving sensitivity for compounds that are not efficiently ionized by flame ionization detection. Using this platform, repeatability of retention times for 14 probe compounds was less than 0.1% RSD (n = 10), and less than 1.0% RSD (n = 10) for area counts. The utility of the analytical approach was illustrated with relevant, challenging applications.


Subject(s)
Chromatography, Gas/instrumentation , Carbon/analysis , Chromatography, Gas/methods , Flame Ionization/instrumentation , Printing, Three-Dimensional , Temperature
17.
J Chromatogr A ; 1609: 460486, 2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31506165

ABSTRACT

Most adsorbent materials used for preconcentrating and thermally desorbing volatile and semi-volatile organic compounds (S/VOCs) in portable or "micro" gas chromatographic (GC/µGC) instruments preferentially capture non-polar or moderately polar compounds relative to more polar compounds. Here, we explore the use of a known trigonal-tripyramidal room-temperature ionic liquid (RTIL) as a surface modifier for the graphitized carbons, Carbopack B (C-B) and Carbopack X (C-X), with the goal of enhancing their capacity and selectivity for polar S/VOCs. Breakthrough tests were performed by challenging tubes packed with ∼2.5 mg of C-B or RTIL-coated C-B (RTIL/C-B) with 13 individual S/VOCs, including several organophosphorus compounds and reference alkyl and aromatic hydrocarbons of comparable vapor pressures, at concentrations ranging from 14 to 130 mg/m3. The 10% breakthrough volume, Vb10, was used as the measure of capacity. For the RTIL/C-B, the Vb10 values of the five organophosphorus vapors tested were consistently ∼2.5 times larger than those for the untreated C-B, and Vb10 values of the four non-polar reference vapors were 11-26 times smaller for the RTIL/C-B than for the untreated C-B. For compounds of similar vapor pressure the capacity ratios for polar vs. non-polar compounds with the RTIL/C-B ranged from 1.8 to 34. Similar results were obtained with C-X and RTIL/C-X on a smaller set of compounds. Tests at 70% relative humidity or with a binary mixture of a polar and non-polar compound had no effect on the capacity of the RTIL/C-B, and there were no changes in Vb10 values after several months of testing that included cycling from 25 to 250 °C. Capacity was strongly correlated with vapor pressure. Attempts to reconcile the selectivity using models based on linear-solvation-energy relationships were only partially successful. Nonetheless, these results indicate that RTIL coating of carbon adsorbents affords a simple, reliable means of rendering them selective for polar S/VOCs.


Subject(s)
Carbon/chemistry , Chromatography, Gas/methods , Ionic Liquids/chemistry , Volatile Organic Compounds/chemistry , Chromatography, Gas/instrumentation , Gases/chemistry , Graphite/chemistry , Hydrocarbons, Aromatic/chemistry , Temperature
18.
Braz. J. Pharm. Sci. (Online) ; 56: e18371, 2020. tab
Article in English | LILACS | ID: biblio-1132038

ABSTRACT

This study aims to investigate chemical composition of essential oils from Murraya paniculata (L.) Jack (Rutaceae) ripe and unripe fruits and determine their in vitro antibacterial activity. Essential oils were extracted by hydrodistillation from Murraya paniculata (L.) Jack ripe and unripe fruits collected in the Cerrado, in Rio Verde, southwestern Goiás, Brazil. They were analyzed by gas chromatography with flame ionization detector (GC-FID) and by gas chromatography-mass spectrometry (GC-MS). Sesquiterpenes, which represent the most abundant class of compounds in oils, predominated in both ripe and unripe fruits. Major constituents of essential oils extracted from ripe fruits (RF-EO) were (-caryophyllene (21.3%), (-ylangene (13.3%), germacrene-D (10.9%) and (-zingiberene (9.7%) whereas the ones of unripe fruits (UF-EO) were sesquithujene (25.0%), (-zingiberene (18.2%), germacrene-D (13.1%) and (-copaene (12.7%). In vitro antibacterial activity of essential oils was evaluated in terms of its minimum inhibitory concentration (MIC) values by the broth microdilution method in 96-well microplates. Both essential oils under investigation showed moderate anti-streptococcal activity against the following bacteria: Streptococcus mutans, S. mitis, S. sanguinis, S. sobrinus and S. salivarius. MIC values ranged between 100 and 400 µg/mL. Regarding the antimycobacterial activity, essential oils from M. paniculata (L.) Jack unripe and ripe fruits were active against Mycobacterium kansasii (MIC = 250 µg/mL), moderately active against M. tuberculosis (MIC = 500 µg/mL) and inactive against M. avium (MIC = 2000 µg/mL). This study was pioneer in revealing similar chemical profiles of both essential oils extracted from Murraya paniculata (L.) Jack unripe and ripe fruits, besides describing their in vitro anti-streptococcal and antimycobacterial activities.


Subject(s)
In Vitro Techniques/methods , Oils, Volatile/chemistry , Rutaceae/anatomy & histology , Murraya/classification , Fruit/anatomy & histology , Streptococcus mutans , Microbial Sensitivity Tests , Chromatography, Gas/instrumentation , Mycobacterium kansasii , Gas Chromatography-Mass Spectrometry/methods , Mycobacterium/classification
19.
Molecules ; 24(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816831

ABSTRACT

The dynamic sorption concentration of explosive vapours on concentrators made of a metal mesh, and the transportation of explosive vapours through the extended metal channels are considered. The efficiency of the concentration and transportation is determined by the breakthrough of the substance's molecules through the channels. The research methods we used were breakthrough calculation theory and experiment. When calculating the breakthrough, a mesh was presented as a set of parallel identical channels. Wire mesh and extended channels were made of stainless steel. The breakthrough is determined through the specific frequency of the collisions between the molecules and the channel's surface. This is presented as a function of the ratio of the substance diffusion flow to the channel's surface to the airflow through the channel. The conditions for high-speed concentration, complete capture of explosive vapours, and low vapour losses during their transportation through the extended channels were determined theoretically and experimentally. For a concentrator made of a mesh, the condition of a high concentration rate at a high breakthrough (up to 80%) was determined. The described sorption concentration is used in portable gas chromatographic detectors of explosive vapours of the EKHO series.


Subject(s)
Chromatography, Gas/instrumentation , Explosive Agents/analysis , Environmental Monitoring/instrumentation , Gases , Kinetics
20.
Lab Chip ; 19(23): 3979-3987, 2019 12 07.
Article in English | MEDLINE | ID: mdl-31659362

ABSTRACT

Development of micro gas chromatography (µGC) is aimed at rapid and in situ analysis of volatile organic compounds (VOCs) for environmental protection, industrial monitoring, and toxicology. However, due to the lack of appropriate microcolumns and associated stationary phases, current µGC is unable to separate highly volatile chemicals such as methane, methanol, and formaldehyde, which are of great interest for their high toxicity and carcinogenicity. This inability has significantly limited µGC field applicability. To address this deficiency, this paper reports the development and characterization of a microfabricated porous layer open tubular (µPLOT) column with a divinylbenzene-based stationary phase. The separation capabilities of the µPLOT column are demonstrated by three distinct analyses of light alkanes, formaldehyde solution, and organic solvents, exhibiting its general utility for a wide range of highly volatile compounds. Further characterization shows the robust performance of the µPLOT column in the presence of high moisture and at high temperatures (up to 300 °C). The small footprint and the ability to separate highly volatile chemicals make the µPLOT column highly suitable for integration into µGC systems, thus significantly broadening µGC's applicability to rapid, field analysis of VOCs.


Subject(s)
Microtechnology , Volatile Organic Compounds/analysis , Chromatography, Gas/instrumentation , Microtechnology/instrumentation , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL