Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1408003, 2024.
Article in English | MEDLINE | ID: mdl-38952388

ABSTRACT

We present the case of a 36-year-old female who was diagnosed at birth with CHI that caused severe hypoglycaemia unresponsive to Diazoxide. Subtotal pancreatectomy was performed at the age of three weeks. Later, histological analysis of her pancreas in a research setting revealed a focal form of CHI. Genetic testing was not available at that time. The patient developed pancreatic exocrine deficiency and insulin-dependent diabetes at the age of 9 years. In 2016, a genetic test revealed a missense heterozygous variant in the ABCC8 gene inherited from her father and classified as having a recessive inheritance. The geneticist concluded that the risk of CHI for her offspring would be low (1/600), making pregnancy favourable. As there was no consanguinity in the family, testing the future father was deemed unnecessary (carrier frequency 1/150 in the general population). The pregnancy occurred spontaneously in 2020 and at a gestational age of 28 weeks, the mother went into premature labour. An emergency C-section was performed in April 2021 resulting in the birth of bichorial bi-amniotic male twins. Following birth, both newborns experienced persistent severe hypoglycaemia which required glucagon treatment and intravenous glucose infusion initially, followed by Diazoxide from day 51 after birth, without satisfactory response. Continuous intravenous Octreotide treatment was introduced on day 72. Due to the recurrence of hypoglycaemia episodes despite reaching maximum doses of Octreotide, from day 92 the treatment was switched to Pasireotide. Genetic tests revealed the same genotypes for both infants: the exon 39 missense variant (c.4716C>A; p.Ser1572Arg) inherited from their mother and a truncating variant in exon 28 (c.3550del; p.Val1184*), inherited from their asymptomatic father. As a result of inheriting two recessive variants of the ABCC8 gene, the children were diagnosed with a diffuse form of CHI, consistent with the diazoxide-unresponsive presentation. This situation is very rare outside consanguinity. This case emphasises the significance of genetic counselling for individuals with a history of rare diseases outside the context of consanguinity, as there is a potential risk of recurrence. Prenatal diagnosis can lead to better outcomes for affected neonates, as well as help families make informed decisions about future pregnancies.


Subject(s)
Congenital Hyperinsulinism , Humans , Female , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/drug therapy , Pregnancy , Adult , Infant, Newborn , Sulfonylurea Receptors/genetics , Male , Twins, Dizygotic/genetics
2.
BMJ Case Rep ; 17(5)2024 May 22.
Article in English | MEDLINE | ID: mdl-38782444

ABSTRACT

Glycogen storage disease type 1A (GSD1A), also known as Von Gierke's disease, is a rare autosomal recessive disorder affecting glycogen metabolism in the liver. It most commonly presents in infancy with hypoglycaemia and failure to thrive, but cases have been reported as undiagnosed until adulthood. A woman in her early 20s with diabetes mellitus presented with right upper quadrant pain and was found to have several haemorrhagic hepatic adenomas. This patient had insulin-dependent diabetes since a pancreatectomy at age 9 months due to continued episodes of hypoglycaemia and suspected insulinoma. During the hospital stay, the hepatic adenomas were embolised, but significant lactic acidosis and hypoglycaemia continued. Further workup revealed a chronic lactic acid level, during several hospital stays, of above 5 mmol/L. After cytology of hepatic tissue ruled out hepatocellular carcinoma, the patient was discharged and recommended to follow-up for genetic testing, which confirmed the diagnosis of GSD1A.


Subject(s)
Congenital Hyperinsulinism , Glycogen Storage Disease Type I , Liver Neoplasms , Humans , Female , Liver Neoplasms/genetics , Liver Neoplasms/diagnosis , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/diagnosis , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/diagnosis , Adult , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/diagnosis , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/genetics , Young Adult , Adenoma/genetics , Adenoma/diagnosis , Adenoma/complications , Adenoma/surgery , Diagnosis, Differential
3.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791571

ABSTRACT

Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.


Subject(s)
Congenital Hyperinsulinism , Genetic Heterogeneity , Hypoglycemia , Mutation , Phenotype , Sulfonylurea Receptors , Humans , Congenital Hyperinsulinism/genetics , Sulfonylurea Receptors/genetics , Female , Infant, Newborn , Male , Hypoglycemia/genetics , Infant , Potassium Channels, Inwardly Rectifying/genetics
4.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38605124

ABSTRACT

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20 , Congenital Hyperinsulinism , Hepatocyte Nuclear Factor 3-beta , Humans , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/pathology , Chromosomes, Human, Pair 20/genetics , Female , Male , Regulatory Sequences, Nucleic Acid
5.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575153

ABSTRACT

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Adult , Animals , Mice , Humans , KATP Channels/genetics , Zebrafish/genetics , Zebrafish/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Congenital Hyperinsulinism/genetics , Insulin/metabolism , Glucose , Adenosine Triphosphate
6.
Rev Med Liege ; 79(3): 168-174, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38487911

ABSTRACT

Congenital hyperinsulinism is the most common cause of recurrent hypoglycemia in newborns and children. Early diagnosis and rapid management are essential to avoid hypoglycaemic brain injury and later neurological complications. Management of those patients involves biological evaluation, molecular genetics, imaging techniques and surgical advances. We report the case of a newborn with recurrent hypoglycemia due to congenital hyperinsulinism (CHI) caused by a new variant in the ABCC8 gene. Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography (18F-DOPA PET/CT scan) reported a focal lesion at the isthmus of the pancreas which has been removed by laparoscopic surgery with a complete recovery for the patient.


L'hyperinsulinisme congénital est la cause la plus fréquente d'hypoglycémies récidivantes chez le nouveau-né et l'enfant. Un diagnostic et une prise en charge précoces sont primordiaux pour éviter les conséquences potentielles sur le développement neurologique. Ces derniers reposent sur la conjonction d'éléments biologiques, génétiques et d'imagerie. Nous rapportons le cas d'un nouveau-né présentant des hypoglycémies récidivantes. La mise au point mettra en évidence un hyperinsulinisme congénital (CHI) lié à un variant non encore décrit au sein du gène ABCC8. L'imagerie par Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography/Computed Tomography-scanner (18F-DOPA PET/CT scan) a mis en évidence une forme focale de l'hyperinsulinisme justifiant une prise en charge chirurgicale amenant à une guérison complète et à l'arrêt de tout traitement médicamenteux.


Subject(s)
Congenital Hyperinsulinism , Laparoscopy , Child , Humans , Infant, Newborn , Infant , Positron Emission Tomography Computed Tomography , Congenital Hyperinsulinism/diagnostic imaging , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/pathology , Pancreas/pathology , Pancreas/surgery , Positron-Emission Tomography/methods
7.
Diabetologia ; 67(5): 940-951, 2024 May.
Article in English | MEDLINE | ID: mdl-38366195

ABSTRACT

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Subject(s)
Congenital Hyperinsulinism , Diabetes, Gestational , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Adult , Middle Aged , Female , Pregnancy , Humans , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Congenital Hyperinsulinism/genetics , Sulfonylurea Compounds/therapeutic use , Mutation/genetics , Glyburide , Adenosine Triphosphate/metabolism
8.
Histol Histopathol ; 39(7): 817-844, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38305063

ABSTRACT

Hyperinsulinemic hypoglycemia (HH) of pancreatic origin includes congenital hyperinsulinism (CHI), insulinoma, insulinomatosis, and adult-onset non-insulinoma persistent hyperinsulinemic hypoglycemia syndrome (NI-PHHS). In this review, we describe the genotype-histotype-phenotype correlations in HH and their therapeutic implications. CHI can occur from birth or later on in life. Histologically, diffuse CHI shows diffuse beta cell hypertrophy with a few giant nuclei per islet of Langerhans, most frequently caused by loss-of-function mutations in ABCC8 or KCNJ11. Focal CHI is histologically characterized by focal adenomatous hyperplasia consisting of confluent hyperplastic islets, caused by a paternal ABCC8/KCNJ11 mutation combined with paternal uniparental disomy of 11p15. CHI in Beckwith-Wiedemann syndrome is caused by mosaic changes in the imprinting region 11p15.4-11p15.5, leading to segmental or diffuse overgrowth of endocrine tissue in the pancreas. Morphological mosaicism of pancreatic islets is characterized by occurence of hyperplastic (type 1) islets in one or a few lobules and small (type 2) islets in the entire pancreas. Other rare genetic causes of CHI show less characteristic or unspecific histology. HH with a predominant adult onset includes insulinomas, which are pancreatic insulin-producing endocrine neoplasms, in some cases with metastatic potential. Insulinomas occur sporadically or as part of multiple endocrine neoplasia type 1 due to MEN1 mutations. MAFA mutations may histologically lead to insulinomatosis with insulin-producing neuroendocrine microadenomas or neuroendocrine neoplasms. NI-PHHS is mainly seen in adults and shows slight histological changes in some patients, which have been defined as major and minor criteria. The genetic cause is unknown in most cases. The diagnosis of HH, as defined by genetic, histological, and phenotypic features, has important implications for patient management and outcome.


Subject(s)
Congenital Hyperinsulinism , Humans , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/pathology , Phenotype , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Hyperinsulinism/genetics , Hyperinsulinism/pathology , Insulinoma/genetics , Insulinoma/pathology , Hypoglycemia/genetics , Genotype , Genetic Association Studies
9.
BMC Endocr Disord ; 24(1): 8, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212772

ABSTRACT

BACKGROUND: ABCC8 variants can cause hyperinsulinemia by activating or deactivating gene expression. This study used targeted exon sequencing to investigate genetic variants of ABCC8 and the associated phenotypic features in Chinese patients with hyperinsulinemic hypoglycemia (HH). METHODS: We enrolled eight Chinese children with HH and analyzed their clinical characteristics, laboratory results, and genetic variations. RESULTS: The age at presentation among the patients ranged from neonates to 0.6 years old, and the age at diagnosis ranged from 1 month to 5 years, with an average of 1.3 ± 0.7 years. Among these patients, three presented with seizures, and five with hypoglycemia. One patient (Patient 7) also had microcephaly. All eight patients exhibited ABCC8 abnormalities, including six missense mutations (c. 2521 C > G, c. 3784G > A, c. 4478G > A, c. 4532T > C, c. 2669T > C, and c. 331G > A), two deletion-insertion mutations (c. 3126_3129delinsTC and c. 3124_3126delins13), and one splicing mutation (c. 1332 + 2T > C). Two of these mutations (c. 3126_3129delinsTC and c. 4532T > C) are novel. Six variations were paternal, two were maternal, and one was de novo. Three patients responded to diazoxide and one patient responded to octreotide treatment. All there patients had diazoxide withdrawal with age. Two patients (patients 3 and 7) were unresponsive to both diazoxide and octreotide and had mental retardation. CONCLUSIONS: Gene analysis can aid in the classification, treatment, and prognosis of children with HH. In this study, the identification of seven known and two novel variants in the ABCC8 gene further enriched the variation spectrum of the gene.


Subject(s)
Congenital Hyperinsulinism , Infant, Newborn , Child , Humans , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/diagnosis , Diazoxide/therapeutic use , Octreotide/therapeutic use , Mutation , China/epidemiology , Sulfonylurea Receptors/genetics
10.
Int J Mol Sci ; 25(2)2024 01 20.
Article in English | MEDLINE | ID: mdl-38279270

ABSTRACT

The BiP co-chaperone DNAJC3 protects cells during ER stress. In mice, the deficiency of DNAJC3 leads to beta-cell apoptosis and the gradual onset of hyperglycemia. In humans, biallelic DNAJC3 variants cause a multisystem disease, including early-onset diabetes mellitus. Recently, hyperinsulinemic hypoglycemia (HH) has been recognized as part of this syndrome. This report presents a case study of an individual with HH caused by DNAJC3 variants and provides an overview of the metabolic phenotype of individuals with HH and DNAJC3 variants. The study demonstrates that HH may be a primary symptom of DNAJC3 deficiency and can persist until adolescence. Additionally, glycemia and insulin release were analyzed in young DNACJ3 knockout (K.O.) mice, which are equivalent to human infants. In the youngest experimentally accessible age group of 4-week-old mice, the in vivo glycemic phenotype was already dominated by a reduced total insulin secretion capacity. However, on a cellular level, the degree of insulin release of DNAJC3 K.O. islets was higher during periods of increased synthetic activity (high-glucose stimulation). We propose that calcium leakage from the ER into the cytosol, due to disrupted DNAJC3-controlled gating of the Sec61 channel, is the most likely mechanism for HH. This is the first genetic mechanism explaining HH solely by the disruption of intracellular calcium homeostasis. Clinicians should screen for HH in DNAJC3 deficiency and consider DNAJC3 variants in the differential diagnosis of congenital hyperinsulinism.


Subject(s)
Congenital Hyperinsulinism , HSP40 Heat-Shock Proteins , Adolescent , Animals , Humans , Mice , Calcium/metabolism , Congenital Hyperinsulinism/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Insulin/metabolism , Insulin Secretion , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
11.
Clin Genet ; 105(5): 549-554, 2024 05.
Article in English | MEDLINE | ID: mdl-38225536

ABSTRACT

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Animals , Rats , Male , Humans , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/genetics , HEK293 Cells , Receptors, Drug/genetics , Receptors, Drug/metabolism , Mutation/genetics , Congenital Hyperinsulinism/genetics , Adenosine Triphosphate , Potassium/metabolism
13.
Tidsskr Nor Laegeforen ; 143(18)2023 12 12.
Article in English, Norwegian | MEDLINE | ID: mdl-38088279

ABSTRACT

This clinical review will give doctors who work with children and neonates an introduction to the diagnosis and treatment of congenital hyperinsulinism, the most common cause of persistent neonatal hypoglycaemia. The condition is a rare monogenic disorder characterised by elevated insulin secretion and is a result of mutations in genes that regulate insulin secretion from pancreatic beta cells. The anabolic effect of insulin induces systemic glucose uptake and inhibits gluconeogenesis, glycogenolysis, ketogenesis and lipolysis. Low levels of glucose and ketone bodies in the blood are harmful to the central nervous system and can lead to brain damage or death. Early diagnosis and treatment of congenital hyperinsulinism are therefore crucial for a good prognosis.


Subject(s)
Congenital Hyperinsulinism , Child , Infant, Newborn , Humans , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Ketone Bodies , Insulin
14.
Orv Hetil ; 164(47): 1877-1884, 2023 Nov 26.
Article in Hungarian | MEDLINE | ID: mdl-38007812

ABSTRACT

In congenital hyperinsulinemic hypoglycemia - the most common cause of persistent hypoglycemia in infancy - a focal lesion can be identified in 50% of the cases. With appropriate medical care based upon early diagnosis, these patients can be cured by the resection of the lesion rendering unnecessary long time medical care, and avoiding serious brain damage from recurrent hypoglycemic episodes. Genetic testing and 18F-fluoro-dihydroxyphenylalanine PET/CT imaging are essential for determining the best possible treatment. We report 2 cases of focal congenital hyperinsulinism - both male infants: 22 and 2 months of age - treated successfully with enucleation of the pancreas lesion (Semmelweis University, Budapest). Both patients had the pathognomonic mutation of the ABCC8 gene of the ATP-sensitive potassium channel. Radiologic imaging and histology confirmed the diagnosis, and after the operation, pharmacological treatment was terminated in both cases. During the follow-up period (5 and 1.5 years, respectively) they are euglycemic, with no morbidities attributed to the operation. We believe that these two operations for focal hyperinsulinism - diagnosed and localised by the above detailed genetic and specific radiological testing - were the first of their kind in Hungary. Based on the acquired experience, every necessary examination can be achieved in our country to improve patient care, reduce morbidity and medical costs. Orv Hetil. 2023; 164(47): 1877-1884.


Subject(s)
Congenital Hyperinsulinism , Hyperinsulinism , Infant , Humans , Male , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/surgery , Pancreas/pathology , Mutation , Hyperinsulinism/pathology
15.
Orphanet J Rare Dis ; 18(1): 360, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974153

ABSTRACT

BACKGROUND: Hypoketotic hypoglycaemia with suppressed plasma fatty acids and detectable insulin suggests congenital hyperinsulinism (CHI). Severe hypoketotic hypoglycaemia mimicking hyperinsulinism but without detectable insulin has recently been described in syndromic individuals with mosaic genetic activation of post-receptor insulin signalling. We set out to expand understanding of this entity focusing on metabolic phenotypes. METHODS: Metabolic profiling, candidate gene and exome sequencing were performed in six infants with hypoketotic, hypoinsulinaemic hypoglycaemia, with or without syndromic features. Additional signalling studies were carried out in dermal fibroblasts from two individuals. RESULTS: Two infants had no syndromic features. One was mistakenly diagnosed with CHI. One had mild features of megalencephaly-capillary malformation-polymicrogyria (MCAP) syndrome, one had non-specific macrosomia, and two had complex syndromes. All required intensive treatment to maintain euglycaemia, with CHI-directed therapies being ineffective. Pathogenic PIK3CA variants were found in two individuals - de novo germline c.323G>A (p.Arg108His) in one non-syndromic infant and postzygotic mosaic c.2740G>A (p.Gly914Arg) in the infant with MCAP. No causal variants were proven in the other individuals despite extensive investigation, although rare variants in mTORC components were identified in one. No increased PI3K signalling in fibroblasts of two individuals was seen. CONCLUSIONS: We expand the spectrum of PI3K-related hypoinsulinaemic hypoketotic hypoglycaemia. We demonstrate that pathogenic germline variants activating post-insulin-receptor signalling may cause non-syndromic hypoinsulinaemic hypoketotic hypoglycaemia closely resembling CHI. This distinct biochemical footprint should be sought and differentiated from CHI in infantile hypoglycaemia. To facilitate adoption of this differential diagnosis, we propose the term "pseudohyperinsulinism".


Subject(s)
Congenital Hyperinsulinism , Proto-Oncogene Proteins c-akt , Infant , Humans , Proto-Oncogene Proteins c-akt/genetics , Insulin , Congenital Hyperinsulinism/genetics , Phosphatidylinositol 3-Kinases/metabolism
16.
Front Endocrinol (Lausanne) ; 14: 1283907, 2023.
Article in English | MEDLINE | ID: mdl-38033998

ABSTRACT

Objective: Congenital hyperinsulinism (CHI) is a group of clinically and genetically heterogeneous disorders characterized by dysregulated insulin secretion. The aim of the study was to elucidate genetic etiologies of Taiwanese children with the most severe diazoxide-unresponsive CHI and analyze their genotype-phenotype correlations. Methods: We combined Sanger with whole exome sequencing (WES) to analyze CHI-related genes. The allele frequency of the most common variant was estimated by single-nucleotide polymorphism haplotype analysis. The functional effects of the ATP-sensitive potassium (KATP) channel variants were assessed using patch clamp recording and Western blot. Results: Nine of 13 (69%) patients with ten different pathogenic variants (7 in ABCC8, 2 in KCNJ11 and 1 in GCK) were identified by the combined sequencing. The variant ABCC8 p.T1042QfsX75 identified in three probands was located in a specific haplotype. Functional study revealed the human SUR1 (hSUR1)-L366F KATP channels failed to respond to intracellular MgADP and diazoxide while hSUR1-R797Q and hSUR1-R1393C KATP channels were defective in trafficking. One patient had a de novo dominant mutation in the GCK gene (p.I211F), and WES revealed mosaicism of this variant from another patient. Conclusion: Pathogenic variants in KATP channels are the most common underlying cause of diazoxide-unresponsive CHI in the Taiwanese cohort. The p.T1042QfsX75 variant in the ABCC8 gene is highly suggestive of a founder effect. The I211F mutation in the GCK gene and three rare SUR1 variants associated with defective gating (p.L366F) or traffic (p.R797Q and p.R1393C) KATP channels are also associated with the diazoxide-unresponsive phenotype.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Humans , Child , Diazoxide/therapeutic use , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Genetic Association Studies , Adenosine Triphosphate
17.
Front Endocrinol (Lausanne) ; 14: 1231043, 2023.
Article in English | MEDLINE | ID: mdl-38027197

ABSTRACT

Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.


Subject(s)
Congenital Hyperinsulinism , Child , Infant , Humans , Child, Preschool , Consensus , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/therapy , Pancreatectomy , United Kingdom
18.
J Matern Fetal Neonatal Med ; 36(2): 2272014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860935

ABSTRACT

OBJECTIVES: To evaluate the clinical characteristics and treatment options of neonates requiring prolonged hospitalization due to persistent hyperinsulinemic hypoglycemia (HH). METHODS: This retrospective cohort study included infants >34 weeks of gestation at birth who were born in our hospital between 2018 and 2021, diagnosed with HH, and required diazoxide within the first 28 days of life. The baseline clinical characteristics, age at the time of diagnosis and treatment options in diazoxide resistance cases were recorded. Genetic mutation analysis, if performed, was also included. RESULTS: A total of 32 infants diagnosed with neonatal HH were followed up. Among the cohort, 25 infants were classified as having transient form of HH and seven infants were classified as having congenital hyperinsulinemic hypoglycemia (CHI). Thirty-one percent of the infants had no risk factors. The median birth weight was significantly higher in the CHI group, whereas no differences were found in other baseline characteristics. Patients diagnosed with CHI required higher glucose infusion rate, higher doses, and longer duration of diazoxide treatment than those in the transient HH group. Eight patients were resistant to diazoxide, and six of them required treatment with octreotide and finally sirolimus. Sirolimus prevented the need of pancreatectomy in five of six patients without causing major side effects. Homozygous mutations in the ABCC8 gene were found in four patients with CHI. CONCLUSIONS: The risk of persistent neonatal hyperinsulinism should be considered in hypoglycemic neonates particularly located in regions with high rates of consanguinity. Our study demonstrated sirolimus as an effective treatment option in avoiding pancreatectomy in severe cases.


Subject(s)
Congenital Hyperinsulinism , Diazoxide , Infant , Infant, Newborn , Humans , Diazoxide/therapeutic use , Retrospective Studies , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Sirolimus/adverse effects , Mutation
19.
Diabetes ; 72(12): 1809-1819, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37725835

ABSTRACT

The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS: Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in ß-cells and α-cells to regulate glucose homeostasis.


Subject(s)
Congenital Hyperinsulinism , Hyperinsulinism , Child , Humans , Glucokinase/genetics , Glucagon , Congenital Hyperinsulinism/genetics , Hyperinsulinism/genetics , Glucose , Mutation , Phenotype
20.
J Biol Chem ; 299(8): 104986, 2023 08.
Article in English | MEDLINE | ID: mdl-37392854

ABSTRACT

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Subject(s)
3-Hydroxyacyl-CoA Dehydrogenase , Amino Acids , Congenital Hyperinsulinism , Hypoglycemia , Insulin Secretion , Insulin-Secreting Cells , Animals , Mice , Amino Acids/metabolism , Amino Acids/pharmacology , Hypoglycemia/enzymology , Hypoglycemia/genetics , Insulin/metabolism , Insulin Secretion/drug effects , Mice, Knockout , 3-Hydroxyacyl-CoA Dehydrogenase/deficiency , 3-Hydroxyacyl-CoA Dehydrogenase/genetics , Insulin-Secreting Cells/enzymology , Congenital Hyperinsulinism/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...