Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.962
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000561

ABSTRACT

Pseudohyperaldosteronism (PHA) is characterized by hypertension, hypokalemia, and a decrease in plasma renin and aldosterone levels. It can be caused by several causes, but the most frequent is due to excess intake of licorice. The effect is mediated by the active metabolite of licorice, glycyrrhetinic acid (GA), which acts by blocking the 11-hydroxysteroid dehydrogenase type 2 and binding to the mineralocorticoid receptor (MR) as an agonist. The management of licorice-induced PHA depends on several individual factors, such as age, gender, comorbidities, duration and amount of licorice intake, and metabolism. The clinical picture usually reverts upon licorice withdrawal, but sometimes mineralocorticoid-like effects can be critical and persist for several weeks, requiring treatment with MR blockers and potassium supplements. Through this case series of licorice-induced PHA, we aim to increase awareness about exogenous PHA, and the possible risk associated with excess intake of licorice. An accurate history is mandatory in patients with hypertension and hypokalemia to avoid unnecessary testing. GA is a component of several products, such as candies, breath fresheners, beverages, tobacco, cosmetics, and laxatives. In recent years, the mechanisms of action of licorice and its active compounds have been better elucidated, suggesting its benefits in several clinical settings. Nevertheless, licorice should still be consumed with caution, considering that licorice-induced PHA is still an underestimated condition, and its intake should be avoided in patients with increased risk of licorice toxicity due to concomitant comorbidities or interfering drugs.


Subject(s)
Glycyrrhetinic Acid , Glycyrrhiza , Hyperaldosteronism , Humans , Glycyrrhiza/adverse effects , Female , Male , Middle Aged , Glycyrrhetinic Acid/pharmacology , Adult , Hypokalemia/chemically induced , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Aged , Hypertension , Aldosterone/metabolism , Aldosterone/blood , Renin/blood , Renin/metabolism
2.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007395

ABSTRACT

Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.


Subject(s)
Electrons , Glycyrrhetinic Acid , Glycyrrhetinic Acid/chemistry , Solvents/chemistry , Electron Transport , Salicylates/chemistry
3.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792208

ABSTRACT

Glycyrrhetinic acid (GA) is a saponin compound, isolated from licorice (Glycyrrhiza glabra), which has been wildly explored for its intriguing pharmacological and medicinal effects. GA is a triterpenoid glycoside displaying an array of pharmacological and biological activities, including anti-inflammatory, anti-bacterial, antiviral and antioxidative properties. In this study, we investigated the underlying mechanisms of GA on acne vulgaris through network pharmacology and proteomics. After the intersection of the 154 drug targets and 581 disease targets, 37 therapeutic targets for GA against acne were obtained. A protein-protein interaction (PPI) network analysis highlighted TNF, IL1B, IL6, ESR1, PPARG, NFKB1, STAT3 and TLR4 as key targets of GA against acne, which is further verified by molecular docking. The experimental results showed that GA inhibited lipid synthesis in vitro and in vivo, improved the histopathological damage of skin, prevented mast cell infiltration and decreased the level of pro-inflammatory cytokines, including TNF-α, IL-1ß and IL-6. This study indicates that GA may regulate multiple pathways to improve acne symptoms, and the beneficial effects of GA against acne vulgaris might be through the regulation of sebogenesis and inflammatory responses.


Subject(s)
Acne Vulgaris , Glycyrrhetinic Acid , Molecular Docking Simulation , Network Pharmacology , Acne Vulgaris/drug therapy , Acne Vulgaris/pathology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/chemistry , Animals , Humans , Mice , Protein Interaction Maps/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Proteomics/methods , Disease Models, Animal
4.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38727048

ABSTRACT

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Glycyrrhetinic Acid , Liver Neoplasms , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Animals , Mice , Drug Resistance, Multiple/drug effects , Ligands , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice, Nude , Apoptosis/drug effects , Hep G2 Cells , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cisplatin/pharmacology , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/therapeutic use , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
5.
J Control Release ; 370: 811-820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754632

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and life-threatening lung disease for which treatment options are limited. Glycyrrhetinic acid (GA) is a triterpenoid with multiple biological effects, such as anti-inflammatory and anti-fibrotic properties. Herein, inhalable milk-derived extracellular vesicles (mEVs) encapsulating GA (mEVs@GA) were screened and evaluated for IPF treatment. The results indicated that the loading efficiency of GA in mEVs@GA was 8.65%. Therapeutic effects of inhalable mEVs@GA were investigated in vitro and in vivo. The mEVs@GA demonstrated superior anti-inflammatory effects on LPS-stimulated MHS cells. Furthermore, repeated noninvasive inhalation delivery of mEVs@GA in bleomycin-induced IPF mice could decrease the levels of transforming growth factors ß1 (TGF-ß1), Smad3 and inflammatory cytokines IL-6, IL-1ß and TNF-α. The mEVs@GA effectively diminished the development of fibrosis and improved pulmonary function in the IPF mice model at a quarter of the dose compared with the pirfenidone oral administration group. Additionally, compared to pirfenidone-loaded mEVs, mEVs@GA demonstrated superior efficacy at the same drug concentration in the pharmacodynamic study. Overall, inhaled mEVs@GA have the potential to serve as an effective therapeutic option in the treatment of IPF.


Subject(s)
Cytokines , Extracellular Vesicles , Glycyrrhetinic Acid , Idiopathic Pulmonary Fibrosis , Mice, Inbred C57BL , Milk , Animals , Glycyrrhetinic Acid/administration & dosage , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Administration, Inhalation , Milk/chemistry , Cytokines/metabolism , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Bleomycin/administration & dosage , Male , Lung/metabolism , Lung/drug effects , Mice , Humans , Cell Line , Drug Carriers/chemistry , Drug Carriers/administration & dosage , Smad3 Protein/metabolism
6.
Toxicol In Vitro ; 98: 105842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761881

ABSTRACT

Oleanane pentacyclic triterpenoids have been widely used in clinical practice. However, studies on their interactions with hepatic transporters remain limited. In this study, we systematically investigated the inhibitory effects of 14 oleanane pentacyclic triterpenoids on organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3), two liver-specific uptake transporters. Through fluorescence-based cellular uptake assays, we identified three potent OATP1B1 inhibitors (saikosaponin B1, saikosaponin A and 18ß-glycyrrhetinic acid) and five potent OATP1B3 inhibitors (echinocystic acid, 3-oxo-16α-hydroxy-olean-12-en-28ß-oic acid, chikusetsu saponin IVa, saikosaponin B1 and 18ß-glycyrrhetinic acid). Structural analysis revealed that free oleanane triterpenoids inhibited OATP1B1/1B3 more potently than triterpene glycosides. Despite their similar structures, 18ß-glycyrrhetinic acid exhibited much stronger inhibition on OATP1B1/1B3 than 18α-glycyrrhetinic acid, while both were substrates of OATP1B3. Interestingly, OATP1B3 overexpression significantly increased reactive oxygen species (ROS) levels in HepG2 cells after treatment with 18ß-glycyrrhetinic acid. To conclude, this study highlights the potential interactions of oleanane pentacyclic triterpenoids with OATP1B1/1B3, and provides novel insights into the anti-cancer activity of 18ß-glycyrrhetinic acid.


Subject(s)
Liver-Specific Organic Anion Transporter 1 , Oleanolic Acid , Solute Carrier Organic Anion Transporter Family Member 1B3 , Humans , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , HEK293 Cells , Hep G2 Cells , Saponins/pharmacology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives
7.
J Biomater Appl ; 39(2): 150-161, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748570

ABSTRACT

Background: Glycyrrhetinic acid-mediated brucine self-assembled nanomicelles enhance the anti-hepatitis B properties of brucine by improving its water solubility, short half-life, toxicity, and side effects. Brucine (B) is an indole alkaloid extracted from the seeds of Strychnos nux-vomica (Loganiaceae). Purpose: To assess the efficacy of the Brucine-Glycyrrhetnic acid-Polyethylene glycol-3,3'-dithiodipropionic acid-Glycerin monostearate (B-GPSG) in treating hepatitis B, its potential to protect against acute liver injury caused by d-galactosamine and its anti-hepatoma activities were studied. Research Design: The concentration of B-GPSG used in the in vivo and in vitro experiments was 0.63 mg/mL. The rats injected with d-GalN (450 mg/kg) were used as liver injury models. The rats were separated into normal, model, positive, positive control, B-PSG and B-GPSG groups. Hepatoma cells expressing HBV HepG2.2.15 were used for in vitro experiments. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, plate cloning, Hoechst staining and flow cytometry were conducted to explore the mechanism of B-GPSG against hepatitis B. Results: Compared with the model group, the liver coefficient of B-GPSG group decreased (4.59 ± 0.17 vs 5.88 ± 0.42), the content of MDA in rat liver homogenate decreased (12.54 ± 1.81 vs 23.05 ± 2.98), the activity of SOD increased, the activity of ALT and AST in rat serum decreased. In vitro, the IC50 values of B-GPSG group decreased. B-GPSG group effectively inhibited the proliferation and migration of HepG2.2.15 cells. Conclusions: The hepatoprotective effects of B-GPSG nanomicelles, which are attributed to their GA-mediated liver targeting and synergistic actions with brucine, suggest their therapeutic potential against hepatitis B. This development opens up new possibilities for the application of traditional Chinese medicine and nanomedicine in anti-hepatitis B.


Subject(s)
Glycyrrhetinic Acid , Hepatitis B , Strychnine , Animals , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/pharmacology , Humans , Hep G2 Cells , Hepatitis B/drug therapy , Strychnine/analogs & derivatives , Strychnine/pharmacology , Strychnine/administration & dosage , Strychnine/chemistry , Rats , Male , Rats, Sprague-Dawley , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Nanoparticle Drug Delivery System/chemistry
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 474-483, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597438

ABSTRACT

OBJECTIVE: To study the inhibitory activities of 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives against the entry of SARS-CoV-2 into host cells. METHODS: With pentacyclic triterpene saponin glycyrrhizic acid (a natural SARS-CoV-2 entry inhibitor) as the lead compound, a series of 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives were designed and synthesized based on hypridization principle, and their inhibitory activities against virus entry were tested in SARS-CoV-2 pseudovirusinfected cells. The antiviral targets of the lead compound 1b was identified by pseudotyped SARS-CoV-2 infection assay and surface plasmon resonance (SPR) assay, and the S protein-mediated cell-cell fusion assay was used to evaluate the effect of 1b on virus-cell membrane fusion. Molecular docking and single amino acid mutagenesis were carried out to analyze the effect of 1b on binding activitiy of S protein. RESULTS: The lead compound 1b showed significant inhibitory effect against Omicron pseudovirus with an EC50 value of 3.28 µmol/L (P < 0.05), and had broad-spectrum antiviral activity against other SARS-CoV-2 pseudovirus. Spike-dependent cell-cell fusion assay demonstrated an inhibitory effect of 1b against SARS-CoV-2 S proteinmediated cell-cell fusion. Molecular docking analysis predicted that the lead compound 1b could be well fitted into a cavity between the attachment (S1) and fusion (S2) subunits at the 3-fold axis, where it formed multiple hydrophobic interactions with Glu309, Ser305, Arg765 and Lys964 residues with a KD value of -8.6 kcal/mol. The compound 1b at 10, 5, 2.5 and 1.25 µmol/L showed a significantly reduced inhibitory activity against the pseudovirus with mutated Arg765, Lys964, Glu309 and Leu303 (P < 0.01). CONCLUSION: 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives are capable of stabilizing spike protein in the pre-fusion step to interfere with the fusion of SARS-CoV-2 with host cell membrane, and can thus serve as potential novel small-molecule SARS-CoV-2 fusion inhibitors.


Subject(s)
COVID-19 , Glycyrrhetinic Acid , Humans , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Virus Internalization
9.
Pathol Res Pract ; 257: 155295, 2024 May.
Article in English | MEDLINE | ID: mdl-38603841

ABSTRACT

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Subject(s)
Glycyrrhetinic Acid , Nanoparticles , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Antiviral Agents/pharmacology , Smoke/adverse effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Line , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Epithelial Cells/drug effects , Epithelial Cells/virology , Cigarette Smoking/adverse effects
10.
Biol Chem ; 405(6): 407-415, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38598859

ABSTRACT

Radiation-induced skin injury is a common side effect of radiotherapy, but there are few therapeutic drugs available for prevention or treatment. In this study, we demonstrate that 18ß-Glycyrrhetinic acid (18ß-GA), a bioactive component derived from Glycyrrhiza glabra, substantially reduces the accumulation of reactive oxygen species (ROS) and inhibits apoptosis in HaCaT cells after ionizing radiation (IR), thereby mitigating radiation-induced skin injury. Mechanistically, 18ß-GA promotes the nuclear import of Nrf2, leading to activation of the Nrf2/HO-1 signaling pathway in response to IR. Importantly, Nrf2 silencing increases cell apoptosis and reverse the protective effect of 18ß-GA on radiation-induced skin injury. Furthermore, 18ß-GA preserves skin tissue structure after irradiation, inhibits inflammatory cell infiltration, and alleviates radiation dermatitis. In conclusion, our results suggest that 18ß-GA reduces intracellular ROS production and apoptosis by activating the Nrf2/HO-1 signaling pathway, leading to amelioration of radiation dermatitis.


Subject(s)
Glycyrrhetinic Acid , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Signal Transduction , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , NF-E2-Related Factor 2/metabolism , Humans , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Animals , Reactive Oxygen Species/metabolism , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Skin/pathology , Apoptosis/drug effects , Mice
11.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657511

ABSTRACT

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Subject(s)
Chemical and Drug Induced Liver Injury , Ferritins , Glycyrrhetinic Acid , Trichothecenes , Animals , Humans , Male , Mice , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Ferritins/metabolism , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Hep G2 Cells , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Nuclear Receptor Coactivators/metabolism , Protective Agents/pharmacology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
12.
Biomed Chromatogr ; 38(5): e5830, 2024 May.
Article in English | MEDLINE | ID: mdl-38445357

ABSTRACT

Hong-Hua-Xiao-Yao tablet (HHXYT) is attracting attention increasingly because of its use in treatment of mammary gland hyperplasia (MGH) and menopausal syndrome. However, its pharmacokinetics remains unclear. This study developed a sensitive and rapid method for simultaneous determination of 10 compounds of HHXYT in rat plasma by liquid chromatography-tandem mass spectrometry and to compare the pharmacokinetics of these compounds in MGH rats and sham operated rats. The linearity, accuracy, precision, stability and matrix effect were within acceptable ranges. This established method was successfully applied to a pharmacokinetics study of 10 compounds in sham operated and MGH rats. According to the results, the bioavailability of glycyrrhetinic acid was highest in MGH rats and sham operated rats. The mean residence times of glycyrrhetinic acid and glycyrrhetinic acid 3-O-glucuronide were higher than those of the other compounds while the mean residence time and half-life of liquiritin, isoliquiritin and paeoniflorin were lower. Some pharmacokinetic parameters of ormononetin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, paeoniflorin, protocatechuic acid and senkyunolide I were significantly different between MGH rats and sham operated rats. This study elucidated the dynamic changes of multiple components in rats after oral administration of HHXYT systematically and comprehensively, which provided guidance for clinical application.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Rats , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods , Reproducibility of Results , Female , Linear Models , Chromatography, Liquid/methods , Tablets/pharmacokinetics , Chalcones/pharmacokinetics , Chalcones/chemistry , Chalcones/blood , Biological Availability , Limit of Detection , Glycyrrhetinic Acid/pharmacokinetics , Glycyrrhetinic Acid/blood , Glycyrrhetinic Acid/chemistry
13.
Biochem Pharmacol ; 223: 116127, 2024 May.
Article in English | MEDLINE | ID: mdl-38490519

ABSTRACT

Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18ß-glycyrrhetinic acid (18ßGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18ßGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18ßGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18ßGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18ßGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.


Subject(s)
Glycyrrhetinic Acid/analogs & derivatives , High-Throughput Screening Assays , Sepsis , Mice , Animals , Lipopolysaccharides , Angiotensinogen/genetics
14.
Phytomedicine ; 128: 155524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552435

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS: Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS: 18ß-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18ßGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, ß, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18ßGA, while proper modification of C3 or C30 position of 18ßGA may vastly increase its activity. CONCLUSION: Our research indicates that 18ßGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, ß, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.


Subject(s)
Chemokine CCL20 , Glycyrrhetinic Acid , Glycyrrhetinic Acid/analogs & derivatives , Psoriasis , Receptors, CCR6 , Signal Transduction , Animals , Glycyrrhetinic Acid/pharmacology , Chemokine CCL20/metabolism , Psoriasis/drug therapy , Humans , Mice , Signal Transduction/drug effects , Receptors, CCR6/metabolism , Activating Transcription Factor 2/metabolism , Disease Models, Animal , Keratinocytes/drug effects , HaCaT Cells , Imiquimod , Skin/drug effects , Skin/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Glycyrrhiza/chemistry
15.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401519

ABSTRACT

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycyrrhetinic Acid , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Glycyrrhetinic Acid/pharmacology , Lung Neoplasms/pathology , Caspase 3 , Peroxiredoxin VI/therapeutic use , Cell Line, Tumor , Apoptosis
16.
Pharm Dev Technol ; 29(3): 176-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376879

ABSTRACT

OBJECTIVE: To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE: The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS: This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS: The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION: These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.


Subject(s)
Glucosides , Glycyrrhetinic Acid , Liposomes , Monoterpenes , Liposomes/pharmacology , Glycyrrhetinic Acid/pharmacology , Liver , Drug Delivery Systems/methods
17.
J Agric Food Chem ; 72(9): 4747-4756, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38335161

ABSTRACT

This study examines the inhibitory effects of a range of sweeteners on α-glucosidase. Our findings revealed that only one natural sweetener, namely, glycyrrhetinic acid 3-O-mono-beta-d-glucuronide (GAMG), derived from licorice, exhibited a mixed-type inhibition against α-glucosidase with a IC50 value of 0.73 ± 0.05 mg/mL. The fluorescence intensity of α-glucosidase was quenched by GAMG in the formation of an α-glucosidase-GAMG complex. GAMG has been shown to induce conformational changes in α-glucosidase, likely through hydrogen bonding, van der Waals force, and alkyl-alkyl interactions with amino acid residues, including Arg 281, Leu 283, Trp 376, Asp 404, Asp 443, Trp 481, Asp 518, Phe 525, Ala 555, and Asp 616. Additional animal validation experiments demonstrated that GAMG slowed starch digestion, thereby attenuating the postprandial glycemic response. Taken together, these findings provide evidence that GAMG is a natural sweetener with potent inhibitory activity that selectively targets α-glucosidase. This study supports the use of GAMG as a natural sweetener, which holds a high biological value and may be beneficial for managing postprandial hyperglycemia.


Subject(s)
Glycyrrhetinic Acid , Hyperglycemia , Animals , Glycyrrhetinic Acid/chemistry , Glucuronides/metabolism , alpha-Glucosidases/chemistry , Hyperglycemia/drug therapy , Sweetening Agents , Glycoside Hydrolase Inhibitors
18.
Cancer Chemother Pharmacol ; 93(6): 575-585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383823

ABSTRACT

PURPOSE: 18ß-glycyrrhetinic acid (GA), the main metabolite of glycyrrhizic acid extracted from the root of licorice, has been reported to possess anti-cancer and immunomodulatory activity, but the mechanisms are not well understood. Recent studies have shown that ferroptosis of immune cells is involved in tumor-associated immune suppression. The purpose of this study was to investigate whether the enhanced immune response via inhibiting immune cell ferroptosis contributed to the anticancer effect of 18ß-GA. METHODS: Lewis Lung carcinoma mouse model and Murine CD8 + T cell culture model were used to examine the changes of immune response and ferroptosis of immune cells. RESULTS: We found that 18ß-GA was effective against lung cancer accompanied by enhanced activation of tumor-infiltrating CD8+ T cells in Lewis Lung carcinoma mouse model. Furthermore, we demonstrated that the boosted immune response by GA was attributed to its ability to inhibit arachidonic acid (AA)-mediated CD8+ T ferroptosis via suppressing CD36 expression. CONCLUSION: The findings of the present study unraveled a novel mechanism underlying the anti-cancer and immunomodulatory activity of 18ß-GA and support that 18ß-GA holds potential to be used as an immune enhancer for lung cancer prevention or treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Lewis Lung , Ferroptosis , Glycyrrhetinic Acid , Mice, Inbred C57BL , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/therapeutic use , Ferroptosis/drug effects , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cell Line, Tumor
19.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350503

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Subject(s)
Cholestasis , Drugs, Chinese Herbal , Glycyrrhetinic Acid , Glycyrrhiza , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Caspase 8 , Necroptosis , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/pathology , Glycyrrhetinic Acid/pharmacology , 1-Naphthylisothiocyanate/toxicity
20.
J Biochem Mol Toxicol ; 38(2): e23655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348715

ABSTRACT

Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18ß-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.


Subject(s)
Benzhydryl Compounds , Environmental Pollutants , Glycyrrhetinic Acid/analogs & derivatives , Heart Injuries , Phenols , Rats , Male , Animals , Antioxidants/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Oxidative Stress , Environmental Pollutants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...