Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1411930, 2024.
Article in English | MEDLINE | ID: mdl-38881891

ABSTRACT

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Subject(s)
Kupffer Cells , Mice, Knockout , RNA-Binding Proteins , Sepsis , Animals , Kupffer Cells/immunology , Kupffer Cells/metabolism , Sepsis/immunology , Sepsis/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Male , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mannose Receptor , Interleukin-6/metabolism
2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892398

ABSTRACT

Myocardial infarction activates an intense fibro-inflammatory reaction that is essential for cardiac remodeling and heart failure (HF). Bioactive peptide galanin plays a critical role in regulating cardiovascular homeostasis; however, its specific functional relevance in post-infarction fibro-inflammatory reprogramming remains obscure. Here, we show that galanin coordinates the fibro-inflammatory trajectory and mitochondrial integrity in post-infarction reperfusion injury. Aberrant deposition of collagen was associated with a marked increase in CD68-positive macrophage infiltration in cardiac tissue in mice subjected to myocardial ischemia/reperfusion (I/R) for 14 days compared to sham controls. Furthermore, we found that the myocardial expression level of a specific marker of M2 macrophages, CD206, was significantly down-regulated in I/R-challenged mice. In contrast, galanin treatment started during the reperfusion phase blunted the fibro-inflammatory responses and promoted the expression of CD206 in I/R-remodeled hearts. In addition, we found that the anti-apoptotic and anti-hypertrophic effects of galanin were associated with the preservation of mitochondrial integrity and promotion of mitochondrial biogenesis. These findings depict galanin as a key arbitrator of fibro-inflammatory responses to cardiac I/R injury and offer a promising therapeutic trajectory for the treatment of post-infarct cardiovascular complications.


Subject(s)
Galanin , Macrophages , Myocardial Reperfusion Injury , Animals , Galanin/metabolism , Galanin/pharmacology , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Macrophages/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mitochondria/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Inflammation/metabolism , Inflammation/pathology , Mannose Receptor , Lectins, C-Type/metabolism , Myocardium/metabolism , Myocardium/pathology , Mannose-Binding Lectins/metabolism , Disease Models, Animal , Apoptosis
3.
J Control Release ; 372: 494-521, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849091

ABSTRACT

In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.


Subject(s)
Anti-HIV Agents , Drug Delivery Systems , HIV Infections , Lectins, C-Type , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Humans , Lectins, C-Type/metabolism , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Receptors, Cell Surface/metabolism , HIV Infections/drug therapy , Mannose-Binding Lectins/metabolism , Animals , Nanoparticles
4.
Sci Rep ; 14(1): 12143, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802677

ABSTRACT

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Subject(s)
Glucose , Glycolysis , Lipopolysaccharides , Microglia , RNA, Long Noncoding , Microglia/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glucose/metabolism , Mice , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/genetics , Interferon-gamma/metabolism , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , Cell Line , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Deoxyglucose/pharmacology , Interleukin-4/metabolism , Interleukin-1beta/metabolism , Metabolic Reprogramming , Arginase , Hexokinase , Lectins
5.
Carbohydr Res ; 541: 109166, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815341

ABSTRACT

Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster comprising ß-1,2-linked mannobioses that in humans induces TNF in vitro and in vivo. The purpose of this study was to analyze whether uptake of acetylated glycoclusters of such ß-1,2-linked mannobioses by human macrophages is dependent on the mannose receptor (CD206) or if it is mediated by transmembrane activation. In mannose receptor blocking assays, monocyte-derived polarized macrophages were incubated with carbohydrate test-compounds and their binding to the mannose receptor was demonstrated as inhibition of FITC-Dextran binding. For 1H NMR spectroscopy, macrophages were incubated with TADM. The cells were collected at 6 and 24 h of incubation, centrifuged and washed twice with PBS. We found dose-dependent blocking of the mannose receptor in macrophage carbohydrate constructs containing free hydroxyl groups, but not by the trivalent acetylated glycocluster molecules. NMR spectroscopic analyses demonstrated that TADM was found in washed cellular pellets after 6-h co-culture, while after 24-h co-culture TADM was no more detectable, suggesting cleavage of the acetyl groups in vitro. The Type 1 immune response enhancing effects of TADM and other, stereochemically and structurally similar, trivalent acetylated glycoclusters may be due to transmembrane uptake of macrophages independent of the mannose receptor.


Subject(s)
Lectins, C-Type , Macrophages , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Lectins, C-Type/metabolism , Lectins, C-Type/chemistry , Macrophages/drug effects , Macrophages/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/chemistry , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Acetylation
6.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38805907

ABSTRACT

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Subject(s)
Arginase , Food Hypersensitivity , Macrophages , Mice, Inbred BALB C , Palaemonidae , Tropomyosin , Animals , Tropomyosin/immunology , Food Hypersensitivity/immunology , Mice , Macrophages/immunology , Arginase/metabolism , Palaemonidae/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cytokines/metabolism , Disease Models, Animal , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mannose-Binding Lectins/metabolism , Female , Mannose Receptor , Jejunum/immunology , Jejunum/pathology , Cells, Cultured , Histamine/metabolism , Macrophage Activation
7.
Liver Int ; 44(8): 1900-1911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38588014

ABSTRACT

BACKGROUND AND AIMS: Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS: Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS: All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS: sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.


Subject(s)
Antigens, Differentiation, Myelomonocytic , Biomarkers , Liver Failure, Acute , Macrophage Activation , Receptors, Cell Surface , Humans , Liver Failure, Acute/mortality , Liver Failure, Acute/blood , Male , Female , Biomarkers/blood , Middle Aged , Adult , Receptors, Cell Surface/blood , Case-Control Studies , Antigens, Differentiation, Myelomonocytic/blood , Antigens, CD/blood , Severity of Illness Index , Lipopolysaccharide Receptors/blood , Prognosis , Lectins, C-Type/blood , Monocytes , Mannose Receptor , Enzyme-Linked Immunosorbent Assay , Mannose-Binding Lectins/blood , United States/epidemiology , Multivariate Analysis , Flow Cytometry , Aged
8.
Viruses ; 16(4)2024 03 24.
Article in English | MEDLINE | ID: mdl-38675840

ABSTRACT

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.


Subject(s)
COVID-19 , Interleukin-6 , Lectins, C-Type , Leukocytes, Mononuclear , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Mannose-Binding Lectins/metabolism , Interleukin-6/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Cells, Cultured , Polysaccharides/metabolism , Healthy Volunteers , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Concanavalin A/metabolism
9.
J Biol Chem ; 300(5): 107284, 2024 May.
Article in English | MEDLINE | ID: mdl-38614208

ABSTRACT

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.


Subject(s)
Lectins, C-Type , Lung Injury , Mannose Receptor , Mannose-Binding Lectins , Proteomics , Receptors, Cell Surface , Thrombospondins , Animals , Mice , CHO Cells , Cricetulus , Endocytosis , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Ligands , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Mice, Knockout , Proteomics/methods , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Thrombospondins/metabolism , Thrombospondins/genetics
10.
FEBS Lett ; 598(13): 1633-1643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631897

ABSTRACT

IFN-γ plays a critical role in host defense against intracellular pathogens. IFN-γ is produced in the bronchoalveolar lavage fluid of mice infected with Pneumocystis, but the role of IFN-γ in host defense against Pneumocystis remains controversial. It has been previously reported that although exogenous IFN-γ has beneficial effects on eradication of Pneumocystis, endogenous IFN-γ has a negative impact on innate immunity in immunocompromised hosts. Surprisingly, CD4+ T cell-depleted IFN-γ deficient (GKO) mice exhibit resistance to Pneumocystis. Alveolar macrophages (AM) from GKO mice exhibit higher expression of macrophage mannose receptor (MMR) and Dectin-1. Concomitantly, they exhibited greater ability to phagocytize Pneumocystis, and this activity was suppressed by inhibitors of these receptors. Incubation with IFN-γ resulted in a reduction in both the expression of these receptors on AM and their Pneumocystis-phagocytic activity. These results indicate that endogenous IFN-γ facilitates Pneumocystis to escape from host innate immunity by attenuating the phagocytic activity of AM via downregulation of MMR and Dectin-1.


Subject(s)
CD4-Positive T-Lymphocytes , Down-Regulation , Interferon-gamma , Lectins, C-Type , Macrophages, Alveolar , Mannose Receptor , Phagocytosis , Receptors, Cell Surface , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interferon-gamma/genetics , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lymphocyte Depletion , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Mice, Inbred C57BL , Mice, Knockout , Pneumocystis/immunology , Pneumocystis Infections/immunology , Pneumocystis Infections/metabolism , Pneumocystis Infections/microbiology , Pneumocystis Infections/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/immunology
11.
Eur J Nucl Med Mol Imaging ; 51(8): 2216-2228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38532026

ABSTRACT

PURPOSE: Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated mannosylated dextran derivative (Al[18F]F-NOTA-D10CM) is a new tracer for PET imaging. We report here on in vitro and in vivo validation of the tracer's ability to target the macrophage mannose receptor CD206. METHODS: First, the uptake of intravenously (i.v.) administered Al[18F]F-NOTA-D10CM was compared between wild-type (WT) and CD206-/- knockout (KO) mice. C57BL/6N mice were injected with complete Freund's adjuvant (CFA) in the left hind leg and the uptake of Al[18F]F-NOTA-D10CM after i.v. or intradermal (i.d.) injection was studied at 5 and 14 days after CFA induction of inflammation. Healthy C57BL/6N mice were studied as controls. Mice underwent PET/CT on consecutive days with [18F]FDG, i.v. Al[18F]F-NOTA-D10CM, and i.d. Al[18F]F-NOTA-D10CM. After the last imaging, Al[18F]F-NOTA-D10CM was i.v. injected for an ex vivo biodistribution study and autoradiography of inflamed tissues. Blood plasma samples were analyzed using high-performance liquid chromatography. To evaluate the specificity of Al[18F]F-NOTA-D10CM binding, an in vitro competitive displacement study was performed on inflamed tissue sections using autoradiography. CD206 expression was assessed by immunohistochemical staining. RESULTS: Compared with WT mice, the uptake of Al[18F]F-NOTA-D10CM was significantly lower in several CD206-/- KO mice tissues, including liver (SUV 8.21 ± 2.51 vs. 1.06 ± 0.16, P < 0.001) and bone marrow (SUV 1.63 ± 0.37 vs. 0.22 ± 0.05, P < 0.0001). The uptake of i.v. injected Al[18F]F-NOTA-D10CM was significantly higher in inflamed ankle joint (SUV 0.48 ± 0.13 vs. 0.18 ± 0.05, P < 0.0001) and inflamed foot pad skin (SUV 0.41 ± 0.10 vs. 0.04 ± 0.01, P < 0.0001) than in the corresponding tissues in healthy mice. The i.d.-injected Al[18F]F-NOTA-D10CM revealed differences between CFA-induced lymph node activation and lymph nodes in healthy mice. Ex vivo γ-counting, autoradiography, and immunohistochemistry supported the results, and a decrease of ~ 80% in the binding of Al[18F]F-NOTA-D10CM in the displacement study with excess NOTA-D10CM confirmed that tracer binding was specific. At 60 min after i.v. injection, an average 96.70% of plasma radioactivity was derived from intact Al[18F]F-NOTA-D10CM, indicating good in vivo stability. The uptake of Al[18F]F-NOTA-D10CM into inflamed tissues was positively associated with the area percentage of CD206-positive staining. CONCLUSION: The uptake of mannosylated dextran derivative Al[18F]F-NOTA-D10CM correlated with CD206 expression and the tracer appears promising for inflammation imaging.


Subject(s)
Dextrans , Fluorine Radioisotopes , Lectins, C-Type , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Animals , Mice , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Tissue Distribution , Dextrans/chemistry , Mannose/chemistry , Positron Emission Tomography Computed Tomography , Mice, Inbred C57BL , Macrophages/metabolism , Isotope Labeling , Heterocyclic Compounds, 1-Ring
12.
Eur J Pharm Biopharm ; 197: 114219, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368913

ABSTRACT

Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI âˆ¼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.


Subject(s)
Liposomes , Mannose Receptor , Nanoparticles , Polyethylene Glycols , Humans , Mannose , Phosphatidylethanolamines , Nanoparticles/chemistry , RNA, Messenger/genetics , Apolipoproteins E , RNA, Small Interfering/chemistry
13.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301891

ABSTRACT

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Subject(s)
Keratins , Lectins, C-Type , Models, Molecular , Humans , Dendritic Cells/metabolism , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Ligands , Mannose Receptor/chemistry , Mutagenesis , Protein Binding , Protein Folding , Protein Structure, Tertiary , Protein Interaction Domains and Motifs , Crystallography, X-Ray
14.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338648

ABSTRACT

The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.


Subject(s)
Mannose Receptor , Mannose , Mannose/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Lectins, C-Type/metabolism , Ligands
15.
Int J Surg ; 110(5): 2692-2700, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377062

ABSTRACT

BACKGROUND: This study aimed to evaluate the effectiveness of neo-mannosyl human serum albumin-indocyanine green (MSA-ICG) for detecting metastatic lymph node (LN) and mapping sentinel lymph node (SLN) using mouse footpad uterine tumor models. Additionally, the authors assessed the feasibility of MSA-ICG in SLN mapping in rabbit uterine cancer models. MATERIALS AND METHODS: The authors compared the LN targeting ability of MSA-ICG with ICG. Six mouse footpad tumor models and two normal mice were each assigned to MSA-ICG and ICG, respectively. After the assigned tracers were injected, fluorescence images were taken, and the authors compared the signal-to-background ratio (SBR) of the tracers. A SLN biopsy was performed to confirm LN metastasis status and CD206 expression level. Finally, an intraoperative SLN biopsy was performed in rabbit uterine cancer models using MSA-ICG. RESULTS: The authors detected 14 groin LNs out of 16 in the MSA-ICG and ICG groups. The SBR of the MSA-ICG group was significantly higher than that of the ICG group. The metastatic LN subgroup of MSA-ICG showed a significantly higher SBR than that of ICG. CD206 was expressed at a high level in metastatic LN, and the signal intensity difference increased as the CD206 expression level increased. SLN mapping was successfully performed in two of the three rabbit uterine cancer models. CONCLUSIONS: MSA-ICG was able to distinguish metastatic LN for an extended period due to its specific tumor-associated macrophage-targeting property. Therefore, it may be a more distinguishable tracer for identifying metastatic LNs and SLNs during uterine cancer surgery. Further research is needed to confirm these results.


Subject(s)
Disease Models, Animal , Indocyanine Green , Lectins, C-Type , Lymphatic Metastasis , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Sentinel Lymph Node , Uterine Neoplasms , Animals , Female , Rabbits , Indocyanine Green/administration & dosage , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/analysis , Mice , Uterine Neoplasms/pathology , Uterine Neoplasms/surgery , Sentinel Lymph Node/pathology , Sentinel Lymph Node/metabolism , Receptors, Cell Surface/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/analysis , Sentinel Lymph Node Biopsy/methods
16.
Eur J Haematol ; 112(5): 794-801, 2024 May.
Article in English | MEDLINE | ID: mdl-38200687

ABSTRACT

PURPOSE: Soluble mannose receptor (sMR) relates to mannose receptor expression on macrophages, and is elevated in inflammatory disorders. Gaucher disease (GD) has altered macrophage function and utilises mannose receptors for enzyme replacement therapy (ERT) endocytosis. sMR has not previously been studied in GD. METHODS: sMR was measured by ELISA and correlated with GD clinical features including spleen and liver volume, haemoglobin and platelet count, bone marrow burden (BMB) scores and immunoglobulin levels. sMR was compared with biomarkers of GD: chitotriosidase, lyso-GL1, PARC, CCL3, CCL4, osteoactivin, serum ACE and ferritin. RESULTS: Median sMR in untreated GD patients was 303.0 ng/mL compared to post-treatment 190.9 ng/mL (p = .02) and healthy controls 202 ng/mL. Median sMR correlated with median spleen volume 455 mL (r = .70, p = .04), liver volume 2025 mL (r = .64, p = .04), BMB 7 (r = .8, p = .03), IgA 1.9 g/L (r = .54, p = .036), IgG 9.2 g/L (r = .57, p = .027), IgM 1.45 g/L (r = .86, p < .0001), with inverse correlation to median platelet count of 125 × 109/L (r = -.47, p = .08) and haemoglobin of 137 g/L (r = -.77, p = .0008). sMR correlated with established biomarkers: osteoactivin 107.8 ng/mL (r = .58, p = .0006), chitotriosidase 3042 nmol/mL/h (r = .52, p = .0006), PARC 800 ng/mL (r = .67, p = .0068), ferritin 547 µg/L (r = .72, p = .002) and CCL3 50 pg/mL (r = .67, p = .007). CONCLUSIONS: sMR correlates with clinical features and biomarkers of GD and reduces following therapy.


Subject(s)
Gaucher Disease , Mannose Receptor , Humans , Gaucher Disease/diagnosis , Gaucher Disease/drug therapy , Biomarkers , Hemoglobins/metabolism , Ferritins
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5677-5688, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38294507

ABSTRACT

The present study aims to explore the therapeutic effect of Stefin B on gouty arthritis (GA) and the polarization of macrophages in mice. Stefin B-overexpressed or knockdown M0 macrophages were constructed. The GA model was established in mice by injecting 25 mg/mL MSU, followed by a single injecting of Stefin B-overexpressing adenovirus vector (GA model + Stefin B OE) or an empty vector (GA model + Stefin B OE NC). Stefin B was found lowly expressed in M1 macrophages. CD206 was markedly upregulated and IL-10 release was signally increased in Stefin B-overexpressed macrophages. In gouty arthritis mice, marked redness and swelling were observed in the ankle joint. Dramatical infiltration of inflammatory cells was observed in the GA model and GA model + Stefin B OE NC groups, which was suppressed in the Stefin B OE group. Increased proportion of F4/80+CD86+ cells observed in GA mice was markedly repressed by Stefin B overexpression, accompanied by the declined level of Caspase-1 and IL-17. Collectively, Stefin B alleviated the GA in mice by inducing the M2 polarization of macrophages.


Subject(s)
Arthritis, Gouty , Macrophages , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/pathology , Arthritis, Gouty/metabolism , Arthritis, Gouty/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Mice , Male , Lectins, C-Type/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mannose-Binding Lectins/metabolism , Disease Models, Animal , Mannose Receptor , Interleukin-10/metabolism
18.
ACS Appl Bio Mater ; 7(8): 4856-4866, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38231485

ABSTRACT

Physiochemical properties of nanoparticles, such as their size and chemical composition, dictate their interaction with professional phagocytes of the innate immune system. Macrophages, in particular, are key regulators of the immune microenvironment that heavily influence particle biodistribution as a result of their uptake. This attribute enables macrophage-targeted delivery, including for phenotypic modulation. Saccharide-based materials, including polyglucose polymers and nanoparticles, are efficient vehicles for macrophage-targeted delivery. Here, we investigate the influence of particle size on cyclodextrin nanoparticle (CDNP) uptake by macrophages and further examine the receptor-mediated interactions that drive macrophage-targeted delivery. We designed and synthesized CDNPs ranging in size from 25 nm to >100 nm in diameter. Increasing particle size was correlated with greater uptake by macrophages in vitro. Both scavenger receptor A1 and mannose receptor were critical mediators of macrophage-targeted delivery, inhibition of which reduced the extent of uptake. Finally, we investigated the cellular bioavailability of drug-loaded CDNPs using a model anti-inflammatory drug, celastrol, which demonstrated that drug bioactivity is improved by CDNP loading relative to free drug alone. This study thus elucidates the interactions between the polyglucose nanoparticles and macrophages, thereby facilitating their application in macrophage-targeted drug delivery that has applications in the context of tissue injury and repair.


Subject(s)
Cyclodextrins , Macrophages , Nanoparticles , Particle Size , Nanoparticles/chemistry , Macrophages/metabolism , Macrophages/drug effects , Cyclodextrins/chemistry , Animals , Mice , Mannose Receptor , RAW 264.7 Cells , Lectins, C-Type/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Materials Testing , Receptors, Cell Surface/metabolism , Scavenger Receptors, Class A/metabolism , Mannose-Binding Lectins/metabolism
19.
São Paulo; s.n; s.n; 2024. 68 p graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1563404

ABSTRACT

A doença de Chagas, considerada doença extremamente negligenciada, acomete mais de 6 milhões de pessoas ao redor do mundo e mais de 75 milhões de pessoas vivem sob risco da doença. Considerada endêmica em 21 países da América Latina. No Brasil, grassa, sobretudo, na região Norte, especialmente, na região amazônica. Apesar de se constituir em risco global, a doença de Chagas conta com apenas com dois fármacos, o benznidazol e o nifurtimox, que, além de tóxicos, não apresentam eficácia significativa na fase crônica da parasitose. Assim sendo, torna-se imperativa a busca por quimioterápicos mais eficazes, mormente na fase crônica da doença. A introdução de novos fármacos da terapêutica várias fases, consumindo tempo e recursos. No entanto, há processos que permitem a otimização de fármacos já existentes e de compostos bioativos, com vistas à busca de candidatos a fármacos, que, uma vez bem-sucedidos nos ensaios clínicos, são aprovados para uso terapêutico. Entre esses processos, destaca-se a latenciação, forma de aprimoramento de propriedades farmacêuticas, farmacocinéticas e, indiretamente, farmacodinâmicas, que utiliza, em geral, transportadores para a resolução de problemas dessas naturezas. Os transportadores variam de acordo com o problema a ser resolvido e, entre eles, os dendrons e dendrímeros podem ser ressaltados pela sua natureza química, que permite a ligação de várias moléculas de fármacos/compostos bioativos e, também, de grupos diretores para certos compartimentos ou células. Dessa forma, podem-se obter fármacos dirigidos, que se constituem em formas latentes de alta seletividade. Face ao exposto e, estimulados pela busca de novas alternativas terapêuticas para a doença de Chagas, o objetivo deste trabalho foi a obtenção de dendrons dirigidos, por meio de manose, derivados de hidroximetilnitrofural (NFOH). Esse composto foi mostrou-se altamente ativo contra T. cruzi, também na fase crônica NFOH e menos tóxico que o protótipo e o benznidazol. Efetuaram-se estudos para a síntese desses compostos derivados de dendron triazólico, sintetizado através de click chemistry, tendo a manose como grupo diretor para os macrófagos, onde, também, são encontrados os amastigotas de Trypanosoma cruzi. Obtiveram-se alguns intermediários, que foram caracterizados por RMN 1H e 13C. A rota sintética proposta não pôde ser finalizada. Por outro lado, efetuaram-se estudos de modelagem molecular, utilizando-se dinâmica molecular, com o intuito de conhecer como se dá a interação da manose e de polimanosídeos com seu respectivo receptor e como se realiza a liberação do composto bioativo da ligação com o dendron. Anteriormente, procedeu-se à caracterização da biologia estrutural do receptor de manose e de suas estruturas primárias, secundárias e terciárias, com ênfase para o domínio CRD4 o papel do cálcio principal na interação com o monossacarídeo. A movimentação do domínio foi muito pouco diferente nos meios simulados (neutro, ácido, contendo ligantes e contendo o cálcio auxiliar), evidenciado pelo RMSF e estudo de PCA desses sistemas. Foi possível concluir que este domínio não apresenta nenhuma alteração conformacional responsável pela liberação de ligantes em meio lisossômico, e que o cálcio auxiliar e os ligantes não causam impactos na estabilidade conformacional do CRD4. Há necessidade de mais estudos para o conhecimento dos requisitos estruturais envolvidos na da formação do complexo receptor-composto bioativo


Chagas disease, considered an extremely neglected one, affects more than 6 million people all over de world, with more than 75 million people living under its risk, while endemics in 21 countries in Latin America. In Brazil, it propagates, mainly in North region, especially in Amazon region. Although being a global risk, only two drugs, benznidazole and nifurtimox, are currently available for Chagas disease. These drugs are toxic and not significantly efficient against the chronic phase of the disease. Therefore, the search for more active chemotherapeutic agents, mainly against the chronic phase of the parasitosis, is imperative. The introduction of new drugs in the therapeutics involves many phases, consuming time, and money. Notwithstanding, there are processes that allow either drugs or bioactive compounds to be optimized, towards drug candidates. These derivatives, once well-succeeded in the clinical trials, can be approved for therapeutic uses. Among those processes, prodrug design stands out. It is a way to improve the pharmaceutics, pharmacokinetics and, indirectly, pharmacodynamics, properties of drugs/bioactive compounds, which requires adequate carriers, in general, for these problems´ solution. The carriers vary according to the problem to be solved, and, among them, dendrons and dendrimers can be emphasized due to their chemical nature, which allows the link of many molecules/bioactive compounds and of directing groups to specific compartments or cells. Thus, targeted drugs, which are latent forms of drugs/bioactive compounds with high selectivity. In this connection and stimulated by the search for new therapeutic alternatives for Chagas disease, the objective of this work was obtaining hydroxymethylnitrofurazone (NFOH) targeted dendrons, by means of mannose, as directing groups. NFOH is highly active against T. cruzi, even in chronic phase of the disease, and less toxic than the prototype and benznidazole. Studies have been developed to synthesize these compounds with a triazole dendron, planned to be obtained by click chemistry. Mannose was designed to be the directing groups to macrophages, where the T. cruzi amastigotes can also be found. Some intermediaries have been obtained and structurally characterized by 1H and 13C NMR, but the proposed synthetic route could not be finished. On the other hand, molecular modeling studies have been developed, using molecular dynamics, with the aim to know how the interaction of mannose, and also of polymannoside, occur with the specific receptor, and how NFOH is released from its linkage to the dendron. The structural biology characterization, as well as of primary, secondary and tertiary structures of the mannose receptor was previously performed, with emphasis onCRD4 and main calcium role in the interaction of the mannoside. All systems simulated (neutral medium, acid medium, complexes with ligands and auxiliary calcium) showed little movement differences when analyzed by RMSF and PCA calculations. It was possible to conclude that this domain shows no conformational changes involved in ligand releasing in lysosomal environment and its conformation is not altered when in presence of ligands or the auxiliary calcium. Much more studies are needed to the knowledge of the structural requirements to the complex receptor-drug-compound bioactive to the receptor


Subject(s)
Chagas Disease/pathology , Dendrimers/analysis , Mannose Receptor/antagonists & inhibitors , Macrophages/classification , Biopharmaceutics/classification , Pharmaceutical Preparations/administration & dosage , Carbon-13 Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/methods
20.
Molecules ; 29(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202633

ABSTRACT

Polyporaceae is an important fungal family that has been a source of natural products with a range of pharmaceutical activities in China. In our previous study, two polysaccharides, PCWPW and PCWPS, with significant antioxidant and antidepressant activity were obtained from Poria cocos. In this study, we evaluated their potential molecular mechanisms in the immunomodulation of macrophages. PCWPW and PCWPS were characterized by GC-MS analysis to contain 1,3-linked Glcp. ELISA assays results demonstrated that the secretion of TNF-α was significantly enhanced by PCWPW/PCWPS. RNA-seq data demonstrated that PCWPS treatment modulated the expression of immune-related genes in macrophages, which was further confirmed by RT-qPCR assays. The activation of TNF-α secretion was found to be mannose receptor (MR) dependent and suppressed by MR inhibitor pretreatment. Moreover, the amount of TNF-α cytokine secretion in PCWPW/PCWPS-induced RAW264.7 cells was decreased when pretreated with NF-κB or MAPK signaling pathway inhibitors. Collectively, our results suggested that PCWPW and PCWPS possessed immunomodulatory activity that regulates TNF-α expression through the NF-κB/MAPK signaling pathway by binding to mannose receptors. Therefore, PCWPW and PCWPS isolated from Poria cocos have potential as drug candidates for immune-related disease treatment.


Subject(s)
Wolfiporia , NF-kappa B , Tumor Necrosis Factor-alpha , Immunomodulation , Mannose Receptor , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL