Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 148
1.
Int J Implant Dent ; 10(1): 32, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874661

PURPOSE: This study aimed to evaluate the potential of Endothelin-1 (ET-1), a peptide derived from vascular endothelial cells, as a biomarker for diagnosing peri-implant diseases. METHODS: A cohort of 29 patients with a total of 76 implants was included in this study and subsequently divided into three groups based on peri-implant clinical parameters and radiographic examination: healthy (peri-implant health) (n = 29), mucositis (n = 22), and peri-implantitis (n = 25) groups. The levels of ET-1 (ρg/site) and interleukin (IL)-1ß (ρg/site) in peri-implant sulcus fluid (PISF) samples were determined using enzyme immunoassay. Statistical analyses were conducted using Kruskal-Wallis and Steel-Dwass tests. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic performance of the biomarkers. RESULTS: ET-1 levels were significantly elevated in the peri-implantitis group compared to those in the healthy group, and were highest in the peri-implant mucositis group. Additionally, IL-1ß levels were significantly higher in the peri-implantitis group than those in the healthy group. ROC curve analysis indicated that ET-1 exhibited superior area under the curve values, sensitivity, and specificity compared to those of IL-1ß. CONCLUSIONS: Our findings suggest that the presence of ET-1 in PISF plays a role in peri-implant diseases. Its significantly increased expression in peri-implant mucositis indicates its potential for enabling earlier and more accurate assessments of peri-implant inflammation when combined with conventional examination methods.


Biomarkers , Endothelin-1 , Interleukin-1beta , Peri-Implantitis , Humans , Endothelin-1/metabolism , Endothelin-1/analysis , Peri-Implantitis/diagnosis , Peri-Implantitis/metabolism , Cross-Sectional Studies , Male , Female , Biomarkers/metabolism , Biomarkers/analysis , Middle Aged , Interleukin-1beta/metabolism , Interleukin-1beta/analysis , Dental Implants/adverse effects , Adult , Mucositis/diagnosis , Mucositis/metabolism , Gingival Crevicular Fluid/chemistry , Gingival Crevicular Fluid/metabolism , Aged , ROC Curve
2.
Eur J Pharmacol ; 975: 176669, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38795758

Methotrexate (MTX)-induced gastrointestinal mucositis is a common adverse effect characterized by redox imbalance and overproduction of inflammatory mediators that perturb intestinal integrity. Currently, there is no definitive treatment for this condition and its prevention is still far beyond comprehension. Because of its pleiotropic pharmacological actions, we aimed to explore the potential mechanisms through which cilostazol (CILO) can protect against MTX-induced intestinal mucositis. Wistar rats were allocated into 4 groups, control, CILO (100 mg/kg, p.o for 14 days), MTX (7.5 mg/kg for 4 successive days), and CILO + MTX. The improving effect of CILO on the morphological structure was confirmed by an upturn in the histopathological and transition electron microscope examinations evidenced by the increased jejunal villus height/width and the crypt depth besides the maintenance of tight junctions. These findings were verified biochemically; on the molecular level, CILO reduced the MTX-induced lipid peroxidation, cleaved caspase-3, p53, and the inflammatory parameters (TLR-2, NF-κB, IL-23, TNF-α, IL-1ß), while increasing the anti-inflammatory marker IL-10 and the antioxidant enzyme SOD. Moreover, CILO decreased the injurious axis AKT/GSK-3ß/cyclin-D1, and CD44+, but increased the immunoexpression of the cell proliferating marker PCNA. CILO also upheld the intestinal barrier by enhancing the tight junction molecules (ZO-1, claudin-4) and the E-cadherin/ß-catenin complex while abating the mesenchymal marker vimentin. In conclusion, CILO protected gut integrity by reducing the epithelial-mesenchymal transition process, the MTX-induced oxidative, apoptotic, and inflammatory mediators, and turning off the CD44/AKT/GSK-3ß/cyclin D1 trajectory and intensifying the expression of PCNA.


Cyclin D1 , Glycogen Synthase Kinase 3 beta , Methotrexate , Mucositis , NF-kappa B , Proto-Oncogene Proteins c-akt , Rats, Wistar , Toll-Like Receptor 2 , Animals , Glycogen Synthase Kinase 3 beta/metabolism , NF-kappa B/metabolism , Methotrexate/toxicity , Methotrexate/pharmacology , Rats , Toll-Like Receptor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mucositis/chemically induced , Mucositis/pathology , Mucositis/metabolism , Male , Cyclin D1/metabolism , Signal Transduction/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Disease Models, Animal
3.
Mol Nutr Food Res ; 68(9): e2300704, 2024 May.
Article En | MEDLINE | ID: mdl-38656560

SCOPE: This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS: Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS: These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.


Fluorouracil , Gastrointestinal Microbiome , Glutamine , Intestinal Mucosa , Mucositis , Animals , Gastrointestinal Microbiome/drug effects , Fluorouracil/adverse effects , Glutamine/pharmacology , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Mice, Inbred ICR , Male , Toll-Like Receptor 4/metabolism , NF-E2-Related Factor 2/metabolism , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Mice , NF-kappa B/metabolism , Oxidative Stress/drug effects , TOR Serine-Threonine Kinases/metabolism , Antimetabolites, Antineoplastic/adverse effects , Heme Oxygenase-1/metabolism
4.
Nutr Res ; 125: 1-15, 2024 May.
Article En | MEDLINE | ID: mdl-38428258

Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1ß; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.


Euterpe , Fluorouracil , Mucositis , Myeloid Differentiation Factor 88 , Plant Extracts , Polyphenols , Seeds , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Mucositis/metabolism , Myeloid Differentiation Factor 88/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Male , Euterpe/chemistry , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Transcription Factor RelA/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
5.
Probiotics Antimicrob Proteins ; 16(1): 275-292, 2024 Feb.
Article En | MEDLINE | ID: mdl-36652108

Mucositis is a high-incidence side effect in cancer patients undergoing chemotherapy. Next-generation probiotics are emerging as new therapeutic tools for managing various disorders. Studies have demonstrated the potential of Akkermansia muciniphila to increase the efficiency of anticancer treatment and to mitigate mucositis. Due to the beneficial effect of A. muciniphila on the host, we evaluated the dose-response, the microorganism viability, and the treatment protocol of A. muciniphila BAA-835 in a murine model of chemotherapy-induced mucositis. Female Balb/c mice were divided into groups that received either sterile 0.9% saline or A. muciniphila by gavage. Mucositis was induced using a single intraperitoneal injection of 5-fluorouracil. The animals were euthanized three days after the induction of mucositis, and tissue and blood were collected for analysis. Prevention of weight loss and small intestine shortening and reduction of neutrophil and eosinophil influx were observed when animals were pretreated with viable A. muciniphila at 1010 colony-forming units per mL (CFU/mL). The A. muciniphila improved mucosal damage by preserving tissue architecture and increasing villus height and goblet cell number. It also improved the integrity of the epithelial barrier, decreasing intestinal permeability and bacterial translocation. In addition, the treatment prevented the expansion of Enterobacteriaceae. The immunological parameters were also improved by decreasing the expression of pro-inflammatory cytokines (IL6, IL1ß, and TNF) and increasing IL10. In conclusion, pretreatment with 1010 CFU/mL of viable A. muciniphila effectively controlled inflammation, protected the intestinal mucosa and the epithelial barrier, and prevented Enterobacteriaceae expansion in treated mice.


Antineoplastic Agents , Mucositis , Humans , Mice , Female , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Cytokines/metabolism , Intestinal Mucosa/metabolism , Antineoplastic Agents/pharmacology , Akkermansia
6.
Arch Microbiol ; 205(5): 179, 2023 Apr 08.
Article En | MEDLINE | ID: mdl-37029820

Pogostemon cablin (Blanco) Benth (PCB), a medicinal and edible homologous Chinese herb, has a protective effect on the structure and function of intestine. In this study, we aimed to investigate the effect of PCB granule (PCBG) on the improvement of irinotecan-induced intestinal mucositis and the regulation of intestinal microorganisms in mice. Our results demonstrated that PCBG supplementation significantly improved diarrhea symptoms caused by irinotecan, as evidenced by inhibiting weight loss, reversing intestinal atrophy, protecting against splenomegaly and balancing oxidative stress. Furthermore, compared with the model group, PCBG restored the intestinal morphology and improved intestinal barrier dysfunction by promoting the expression of tight junction proteins and mucin. Moreover, high-throughput sequencing analysis revealed that PCBG improved the flora disorder caused by irinotecan and regulated microbial community structure, such as decreasing the relative abundance of Bacteroides as well as increasing the relative abundance of Lactobacillus. Meanwhile, the disordered microbial functions in intestinal mucositis mice were recovered more closely to the controls by PCBG. Finally, we found that a robust correlation between the specific microbiota and intestinal mucositis-related index. In summary, these findings revealed the beneficial effects of PCBG on the intestinal barrier and gut microbiota of irinotecan-induced intestinal mucositis, which may be one of the potential strategies to reduce the clinical side effects of irinotecan.


Gastrointestinal Microbiome , Mucositis , Pogostemon , Mice , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Irinotecan/adverse effects , Irinotecan/metabolism , Intestinal Mucosa , Intestines
7.
Probiotics Antimicrob Proteins ; 15(2): 424-440, 2023 04.
Article En | MEDLINE | ID: mdl-36631616

Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.


Gastrointestinal Microbiome , Mucositis , Mice , Animals , Mucositis/drug therapy , Mucositis/metabolism , Mucositis/pathology , Arginine/metabolism , Intestines , Intestinal Mucosa/metabolism , Fluorouracil , Oligosaccharides/pharmacology
8.
Phytomedicine ; 109: 154605, 2023 Jan.
Article En | MEDLINE | ID: mdl-36610133

BACKGROUND: Intestinal mucositis (IM) is one of the common side effects of chemotherapy with Cytarabine (Ara-C) and contributes to the major dose-limiting factor of chemotherapy, while the effective drug for IM is little. Astragalus, one of the main active components extrated from the roots of Astragalus membranaceus (AS-IV), is a common Chinese herbal medicine used in gastrointestinal diseases. However, the effect and mechanism of AS-IV on IM is unclear. Accumulating evidence suggests that M1 macrophages play a pivotal role in IM progression. PURPOSE: The purpose of the study was to explore the protection of AS-IV and its potential molecular mechanism on intestinal mucositis injury induced by Ara-C. METHOD: The protective effect of AS-IV was investigated in LPS-induced macrophages and Ara-C-induced intestinal mucositis mouse model. H&E, immunofluorescence and western blotting were used to evaluate the damage in different doses of Ara-C. Silencing AKT targeted by siRNA was performed to explore the potential mechanisms regulating macrophage polarization effect of Ara-C, which was investigated by CCK-8, immunofluorescence and western blotting. Flow cytometry, immunofluorescence and Western blotting were used to detect macrophage surface marker proteins and inflammatory genes to explore the potential molecular mechanism of AS-IV regulating macrophage polarization. RESULTS: The Cytarabine intervention at dose of 100mg/kg significantly induced IM in mice, with the ileum the most obvious site of injury, accompanied by decreased intestinal barrier, intestinal macrophage polarization to M1 and inflammation response. The administration of AS-IV improved weight loss, food intake, ileal morphological damage, intestinal barrier destruction and inflammatory factor release in mice induced by Ara-c, and also suppressed macrophage polarization to M1, regulating in phenotypic changes in macrophages. In vitro, the expression of M1 macrophage surface marker protein was markedly decreased in LPS-induced macrophages after silencing AKT. Similarly, the western blotting of intestinal tissues and molecular docking indicated that the key mechanisms of AS-IV were remodel AKT signaling, and finally regulating M1 macrophages and decrease inflammation response. CONCLUSION: Our study highlights that AS-IV exerts protective effect in Ara-C-induced IM through inhibit polarization to M1 macrophages based on AKT, and AS-IV may serve as a novel AKT inhibitor to counteract the intestinal adverse effects of chemotherapeutic agents.


Cytarabine , Mucositis , Proto-Oncogene Proteins c-akt , Animals , Mice , Cytarabine/adverse effects , Inflammation/drug therapy , Lipopolysaccharides , Macrophages , Membrane Proteins/metabolism , Molecular Docking Simulation , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Proto-Oncogene Proteins c-akt/metabolism
9.
Probiotics Antimicrob Proteins ; 15(5): 1079-1091, 2023 10.
Article En | MEDLINE | ID: mdl-35639268

Chemotherapy-induced intestinal mucositis is one of the major toxic side effects in the treatment of cancer patients. The purpose of this study is to screen lactic acid bacteria which could alleviate intestinal inflammation and damage induced by chemotherapeutic agents and explore the possible underlying mechanisms. Lactobacillus salivarius CPU-01 was selected from traditional Chinese fermented foods due to its protective effects on the toxicity of temozolomide in Caenorhabditis elegans. Eighteen ICR mice were randomly divided into 3 groups including control group, temozolomide-induced intestinal mucositis group, and temozolomide + L. salivarius CPU-01 group, and were used to investigate the effect of L. salivarius CPU-01 on chemotherapy-induced intestinal mucositis. It has been demonstrated that the administration of L. salivarius CPU-01 can prevent colon shortening and alleviate colon tissue damage caused by temozolomide-induced intestinal mucositis in mice. L. salivarius CPU-01 relieved the intestinal microbiota disorders caused by temozolomide and contributed to the growth of beneficial bacteria, such as Lactobacillus, Clostridia UCG - 014_norank, and Akkermansia. In vivo experiments also indicated that L. salivarius CPU-01 can suppress the level of temozolomide-induced pro-inflammatory cytokines in serum and mRNA expression in the small intestine tissues. It was also found that L. salivarius CPU-01 significantly increased the expressions of intestinal tight junction (TJ) proteins, ZO-1, and Occludin proteins in mice treated with temozolomide. These findings suggest that L. salivarius CPU-01 can ameliorate temozolomide-induced intestinal mucositis by modulating gut microbiota, blocking pro-inflammatory cytokines, and repairing the intestinal barrier. These findings suggest probiotics may serve as a potential alternative therapeutic strategy for the prevention of chemotherapy-induced intestinal mucositis in the future.


Antineoplastic Agents , Gastrointestinal Microbiome , Ligilactobacillus salivarius , Mucositis , Mice , Animals , Mucositis/chemically induced , Mucositis/metabolism , Mucositis/microbiology , Cytokines/metabolism , Temozolomide/adverse effects , Temozolomide/metabolism , Mice, Inbred ICR , Antineoplastic Agents/pharmacology , Intestinal Mucosa/microbiology
10.
Transpl Immunol ; 74: 101659, 2022 10.
Article En | MEDLINE | ID: mdl-35781023

BACKGROUND: A dental Implant is a prosthetic device made of alloplastic materials implanted into the bone to provide retention and support for a dental prosthesis. Sirtuin1 (SIRT1) molecule, a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, regulates a variety of physiological and pathological processes, including oxidative stress, metabolism, cell proliferation, cell differentiation, inflammatory, and apoptosis. We explored whether the expression of SIRT1 correlates in patients receiving implants with peri-implant mucositis (PIM) and peri-implantitis (PI) in comparison to patients with healthy peri-implant area (PIH). METHODS: A number of 198 patients with dentition defects were enrolled in the study after their implants were functional for at least 6 months. All 198 subjects were divided into 3 groups: 1) control patients with PIH healthy implants; 2) patients with PIM mucositis; and 3) patients with PI implantitis. To distinguish these three groups, peri-implant crevicular fluid (PICF) was collected by inserting a sterile paper strip into the gap around the implant and the levels of SIRT1 and cytokines were measured by the enzyme linked immunosorbent assay (ELISA). Demographic and clinical data included age, sex, Body Mass Index (BMI), probing depth (PD), plaque index (PLI), bleeding on probing (BOP), oral health impact profile (OHIP-14), history of periodontitis and the use time of implants. RESULTS: The PD, PLI, OHIP-14 evaluation scores in patients with periodontitis of PIM mucositis and PI implantitis were all significantly higher than in patients with PIH healthy implants. Overall, the SIRT1 levels in PICF of the PIM and PI patients were significantly lower than of the PIH patients. In comparison with PIM patients, SIRT1 levels of the PI patients were remarkably lower than the PIH patients. Pearson's analysis showed that SIRT1 levels were negatively correlated with levels of interleukin (IL)-6, C-reactive protein (CRP) and IL-1ß in patients with PIM and PI. We suggest that SIRT1 levels could serve as a potential diagnostic biomarker of PI or PIM. The PICF levels of SIRT1, CRP, IL-6, IL-1ß and the history of periodontitis were the risk factors for patients with peri-implant inflammatory process. CONCLUSION: The measurement of SIRT1 expression in PICF may serve as a biomarker for the ongoing inflammatory process in patients with dental implants. The low SIRT1 levels correlated with PI implantitis and PIM mucositis as well as the elevated levels of pro-inflammatory cytokines (CRP, IL-6 and IL-1ß).


Mucositis , Peri-Implantitis , Periodontitis , Biomarkers , Cytokines/metabolism , Gingival Crevicular Fluid/chemistry , Gingival Crevicular Fluid/metabolism , Humans , Interleukin-6 , Mucositis/metabolism , Peri-Implantitis/diagnosis , Peri-Implantitis/metabolism , Periodontitis/metabolism , Sirtuin 1
11.
Nutrients ; 14(13)2022 Jun 27.
Article En | MEDLINE | ID: mdl-35807844

Inflammatory bowel diseases (IBD) and microscopic colitis are chronic immune-mediated inflammatory disorders that affect the gastroenterological tract and arise from a complex interaction between the host's genetic risk factors, environmental factors, and gut microbiota dysbiosis. The precise mechanistic pathways interlinking the intestinal mucosa homeostasis, the immunological tolerance, and the gut microbiota are still crucial topics for research. We decided to deeply analyze the role of bile acids in these complex interactions and their metabolism in the modulation of gut microbiota, and thus intestinal mucosa inflammation. Recent metabolomics studies revealed a significant defect in bile acid metabolism in IBD patients, with an increase in primary bile acids and a reduction in secondary bile acids. In this review, we explore the evidence linking bile acid metabolites with the immunological pathways involved in IBD pathogenesis, including apoptosis and inflammasome activation. Furthermore, we summarize the principal etiopathogenetic mechanisms of different types of bile acid-induced diarrhea (BAD) and its main novel diagnostic approaches. Finally, we discuss the role of bile acid in current and possible future state-of-the-art therapeutic strategies for both IBD and BAD.


Colitis, Microscopic , Inflammatory Bowel Diseases , Mucositis , Bile Acids and Salts/metabolism , Colitis, Microscopic/metabolism , Colitis, Microscopic/pathology , Gastrointestinal Motility , Humans , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Mucositis/metabolism
12.
Int J Implant Dent ; 8(1): 30, 2022 07 14.
Article En | MEDLINE | ID: mdl-35834021

BACKGROUND: The present study was based on the null hypothesis that there is no difference in clinicoradiographic parameters and whole salivary alpha amylase (AA) and mucin-4 levels before and after non-surgical mechanical debridement (NSMD) of patients with peri-implant mucositis (PM). The aim was to assess whole salivary AA and mucin-4 levels before and after treatment of PM. METHODS: Patients with PM (Group-1) and individuals without peri-implant diseases (Group-2) were included. Demographic data was collected and peri-implant modified plaque and bleeding indices (mPI and mBI, respectively), probing depth (PD) and crestal bone loss were measured at baseline. Levels of AA and mucin-4 were assessed in unstimulated whole saliva samples. All patients underwent full-mouth non-surgical periodontal therapy (NSPT) and NSMD; and clinical parameters and salivary biomarkers were re-assessed after 3 months. Level of significance was set at P < 0.01. RESULTS: Twenty-six and 32 individuals were included in groups 1 and 2, respectively. None of the participants had periodontitis. At baseline clinical periodontal parameters (PI [P < 0.001], GI [P < 0.001], clinical AL [P < 0.001] and PD [P < 0.001]) were significantly high in Group-1 than Group-2. At 3-month follow-up, there was a statistically significant reduction in clinical periodontal and peri-implant parameters (PI [P < 0.01], GI [P < 0.01], and PD [P < 0.01]) in Group-1 compared with their baseline values. At baseline, salivary AA levels were significantly high in Group-1 than Group-2 (P < 0.01). At 3-month follow-up, there was no significant difference in whole salivary AA levels among patients in groups 1 and 2. CONCLUSIONS: The AA and mucin-4 levels are potential biomarkers for evaluation of peri-implant diseases including PM. Mechanical instrumentation continues to be the most predictable treatment option for the management of peri-implant diseases.


Dental Implants , Mucin-4 , Peri-Implantitis , Saliva , Salivary alpha-Amylases , Stomatitis , Biomarkers/analysis , Debridement , Dental Implants/adverse effects , Humans , Mucin-4/analysis , Mucositis/etiology , Mucositis/metabolism , Mucositis/therapy , Peri-Implantitis/etiology , Peri-Implantitis/metabolism , Peri-Implantitis/therapy , Saliva/chemistry , Salivary alpha-Amylases/analysis , Stomatitis/etiology , Stomatitis/metabolism , Stomatitis/therapy
13.
BMC Immunol ; 23(1): 19, 2022 04 21.
Article En | MEDLINE | ID: mdl-35448938

BACKGROUND: 5-Fluorouracil (5-FU) is a used chemotherapy drug for cancer, and its main side effect is intestinal mucositis which causes chemotherapy to fail. It was known that short-chain fatty acids (SCFAs) can inhibit immune cell release of various proinflammatory factors and inhibit excessive intestinal inflammation. However, the inhibitory effect of SCFAs on 5-FU-induced intestinal mucositis is still unclear. RESULTS: To simulate the effects of SCFAs on immune and intestinal epithelial cells, the cells (THP-1 cells and Caco-2 cells) were pretreated with sodium acetate (NaAc), sodium propionate (NaPc) and sodium butyrate (NaB), then inflammation was induced by 5-FU. The expressions of reactive oxygen species (ROS), Beclin-1, LC3-II, NF-κB p65, NLRP3 inflammasome, proinflammatory/anti-inflammatory cytokines and mucosal tight junction proteins were determined. In our results, the three SCFAs could inhibit ROS expressions, NLRP3, Caspase-1, IL-1ß, IL-6, IL-18, Beclin-1 and LC3-II, when induced by 5-FU. In a 5-FU-induced chemoentermuctis mouse model, Lactobacillus rhamnoides can increase the concentrations of three SCFAs in faeces and increase the concentrations of IL-1ß, IL-6 and IgA in serum, and decrease the expressions of NLRP3 and IL-17 in spleen cells. The expressions of ZO-1 and Occludin in intestinal mucosa were significantly increased. CONCLUSIONS: These results indicated that the three SCFAs can effectively suppress the inflammation of THP-1 cells and Caco-2 cells and maintain tight junction integrity in intestinal mucosal epithelial cells.


Mucositis , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Beclin-1/metabolism , Beclin-1/pharmacology , Caco-2 Cells , Fatty Acids, Volatile/adverse effects , Fatty Acids, Volatile/metabolism , Fluorouracil/adverse effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Mice , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Tight Junctions/metabolism
14.
Phytomedicine ; 101: 154092, 2022 Jul.
Article En | MEDLINE | ID: mdl-35430483

BACKGROUND: 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 µg/ml. PURPOSE: In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS: A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS: Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 µM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION: This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.


Gastrointestinal Diseases , Gastrointestinal Microbiome , Intestinal Diseases , Mucositis , Animals , Disease Models, Animal , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Fluorouracil/adverse effects , Gastrointestinal Diseases/chemically induced , Humans , Hydrolyzable Tannins , Inflammation/metabolism , Intestinal Diseases/metabolism , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , RNA, Ribosomal, 16S/genetics , Water
15.
Immunol Invest ; 51(6): 1756-1771, 2022 Aug.
Article En | MEDLINE | ID: mdl-35152824

Cancer chemotherapy and radiotherapy may result in mucositis characterized by stem cell damage and inflammation in the gastrointestinal tract. The molecular mechanisms underlying this pathology remain unknown. Based on the assumption that mitochondrial CPG-DNA (mtDNA) released and sensed by TLR9 could underlie mucositis pathology, we analyzed the mtDNA levels in sera as well as inflammatory and disease parameters in the small intestine from wild-type (WT) and TLR9-deficient mice (TLR9-/-) in an experimental model of intestinal mucositis induced by irinotecan. Additionally, we verified the ability of WT and TLR9-/- macrophages to respond to CpG-DNA in vitro. WT mice injected with irinotecan presented a progressive increase in mtDNA in the serum along with increased hematocrit, shortening of small intestine length, reduction of intestinal villus:crypt ratio and increased influx of neutrophils, which were followed by higher expression of Nlrp3 and Casp1 mRNA and increased IL-1ß levels in the ileum when compared to vehicle-injected mice. TLR9-deficient mice were protected in all these parameters when compared to WT mice. Furthermore, TLR9 was required for the production of IL-1ß and NO after macrophage stimulation with CpG-DNA. Overall, our findings show that the amount of circulating free CpG-DNA is increased upon chemotherapy and that TLR9 activation is important for NLRP3 inflammasome transcription and further IL-1ß release, playing a central role in the development of irinotecan-induced intestinal mucositis. We suggest that TLR9 antagonism may be a new therapeutic strategy for limiting irinotecan-induced intestinal inflammation.


Mucositis , Animals , DNA, Mitochondrial/genetics , Inflammation/metabolism , Irinotecan/toxicity , Ligands , Mice , Mice, Knockout , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
16.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article En | MEDLINE | ID: mdl-35162944

Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.


Doxycycline/adverse effects , Fluorouracil/adverse effects , Intestinal Mucosa/drug effects , Irinotecan/adverse effects , Irritants/adverse effects , Mannitol/metabolism , Mucositis/pathology , Animals , Ethanol/adverse effects , Injections, Intraperitoneal , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mucositis/chemically induced , Mucositis/metabolism , Organ Size/drug effects , Permeability , Rats , Sodium Dodecyl Sulfate/adverse effects
17.
Chin J Integr Med ; 28(11): 1000-1006, 2022 Nov.
Article En | MEDLINE | ID: mdl-33420580

OBJECTIVE: To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism. METHODS: A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/ß-catenin pathway (Wnt3, LRP5, ß-catenin, c-Myc, LRG5 and CD44). RESULTS: BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/ß -catenin mediators such as Wnt3, LRP5, ß-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01). CONCLUSIONS: BBD attenuates the adverse effects induced by 5-FU via Wnt/ß-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.


Antineoplastic Agents , Mucositis , Animals , Male , Mice , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , Diarrhea/drug therapy , Fluorouracil/pharmacology , Intestinal Mucosa , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Pentobarbital/metabolism , Pentobarbital/pharmacology , Pentobarbital/therapeutic use , Proliferating Cell Nuclear Antigen/metabolism , Saline Solution
18.
J Biochem Mol Toxicol ; 36(1): e22932, 2022 Jan.
Article En | MEDLINE | ID: mdl-34665902

5-Fluorouracil (5-FU) is a front-line cytotoxic therapy. However, intestinal mucositis is a well-known adverse event of 5-FU, which limits its therapeutic use. Indeed, thymol, which is a monoterpene component of the essential oil derived from thymus, has a potential anti-inflammatory and immunomodulatory activity. Therefore, this study aimed to investigate the potential chemoprotective effect of thymol against 5-FU-induced intestinal mucositis. Rats were either exposed to two doses of 5-FU (150 mg/kg, ip) and/or treated with thymol (60 or 120 mg/kg). Oxidative stress and inflammatory markers, as well as pathological changes, were assessed. 5-FU-induced severe intestinal damages as were evidenced by histopathological changes as well as oxidative and inflammatory responses. Thymol pretreatment inhibited 5-FU-induced oxidative stress by reducing lipid peroxidation and increasing intestinal levels of antioxidant systems. Moreover, inflammatory response markers, such as interleukin-6, prostaglandin E2, and COX-2 were also improved. The immunoblotting analysis also showed that thymol significantly inhibited the 5-FU-induced expression of nuclear factor-κB, tumor necrosis factor-α, and transforming growth factor ß-1 (TGF-ß1), in addition to the suppression of p38 and phosphorylated c-Jun N-terminal kinases (p-JNK) mitogen-activated protein kinase proteins' expressions. Our study is the first to demonstrate the promising protective effect of thymol against 5-FU-induced intestinal mucositis through inhibition of oxidative, inflammatory pathways, and suppression of TGF-ß/p38/p-JNK signaling.


Fluorouracil/adverse effects , Intestinal Diseases , MAP Kinase Signaling System/drug effects , Mucositis , NF-kappa B/metabolism , Thymol/pharmacology , Transforming Growth Factor beta/metabolism , Animals , Chymases , Fluorouracil/pharmacology , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Rats, Wistar
19.
Biomed Pharmacother ; 146: 112525, 2022 Feb.
Article En | MEDLINE | ID: mdl-34906776

The therapeutic armamentarium for the treatment of oral mucositis is very poor. Catechin and baicalin are two natural flavonoids that have been individually reported to have a curative potential. Flavocoxid is a mixed extract containing baicalin and catechin showing antioxidant effects and anti-inflammatory activity mainly due to a dual inhibition of inducible cyclooxygenase (COX-2), 5-lipoxygenase (5-LOX) and NLRP3 pathway. The aim of this study was to evaluate the anti-inflammatory and anti-oxidant effects of flavocoxid in an "in vitro" model of oral mucositis induced by triggering an inflammatory phenotype in human gingival fibroblasts (GF) and human oral mucosal epithelial cells (EC). GF and EC were challenged with lipopolysaccharide (LPS 2 µg/ml) alone or in combination with flavocoxid (32 µg/ml). Flavocoxid increased Nrf2, prompted a marked reduction in malondialdehyde levels and reduced the expression of COX-2 and 5-LOX together with PGE2, and LTB4 levels. Flavocoxid caused also a great decrease in the expression of NF-κB and turned off NLRP3 inflammasome and its downstream effectors signal, as caspase-1, IL-1ß and IL-18 in both GF and EC cells stimulated with LPS. These results suggest a correlation between oxidative stress and NLRP3 activation and indicate that flavocoxid suppresses the inflammatory storm that accompanies oral mucositis. This preclinical evidence deserves to be confirmed in a clinical setting.


Catechin , Mucositis , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Catechin/therapeutic use , Drug Combinations , Epithelial Cells , Fibroblasts/metabolism , Gingiva/drug effects , Gingiva/metabolism , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mucositis/drug therapy , Mucositis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects
20.
Sci Rep ; 11(1): 22911, 2021 11 25.
Article En | MEDLINE | ID: mdl-34824316

Gastrointestinal mucositis is a complication of anticancer treatment, with few validated in vitro systems suitable to study the complex mechanisms of mucosal injury. Therefore, we aimed to develop and characterize a chemotherapeutic-induced model of mucositis using 3D intestinal organoids. Organoids derived from mouse ileum were grown for 7 days and incubated with different concentrations of the chemotherapeutic agent methotrexate (MTX). Metabolic activity, citrulline levels and cytokine/chemokine production were measured to determine the optimal dosage and incubation time. The protective effects of folinic acid on the toxicity of MTX were investigated by pre-treating organoids with (0.0005-50 µg/mL) folinic acid. The impact of microbial-derived short-chain fatty acids was evaluated by supplementation with butyrate in the organoid model. MTX caused a dose-dependent reduction in cell metabolic activity and citrulline production that was salvaged by folinic acid treatment. Overall, MTX causes significant organoid damage, which can be reversed upon removal of MTX. The protective effect of folinic acid suggest that the organoids respond in a clinical relevant manner. By using the model for intervention, it was found that prophylactic treatment with butyrate might be a valuable strategy for prophylactic mucositis prevention.


Antimetabolites, Antineoplastic/toxicity , Butyrates/pharmacology , Ileum/drug effects , Intestinal Mucosa/drug effects , Leucovorin/pharmacology , Methotrexate/toxicity , Mucositis/prevention & control , Animals , Citrulline/metabolism , Cytokines/metabolism , Female , Ileum/metabolism , Ileum/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mucositis/chemically induced , Mucositis/metabolism , Mucositis/pathology , Organoids , Tissue Culture Techniques
...