Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.907
1.
Sci Adv ; 10(22): eadn0235, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820155

The ability of cells to organize into tissues with proper structure and function requires the effective coordination of proliferation, migration, polarization, and differentiation across length scales. Skeletal muscle is innately anisotropic; however, few biomaterials can emulate mechanical anisotropy to determine its influence on tissue patterning without introducing confounding topography. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topography, C2C12 myoblasts collectively polarize in the stiffest direction. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of the same chemical formulation. These findings provide valuable insights for designing biomaterials that mimic anisotropic microenvironments and underscore the importance of stiffness anisotropy in orchestrating tissue morphogenesis.


Extracellular Matrix , Muscle Fibers, Skeletal , Anisotropy , Animals , Muscle Fibers, Skeletal/physiology , Mice , Cell Line , Cell Differentiation , Muscle Contraction/physiology , Myoblasts/cytology
2.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760872

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
3.
Elife ; 132024 May 16.
Article En | MEDLINE | ID: mdl-38752835

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Hibernation , Animals , Hibernation/physiology , Energy Metabolism , Skeletal Muscle Myosins/metabolism , Ursidae/metabolism , Ursidae/physiology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics
4.
J Biomech ; 168: 112134, 2024 May.
Article En | MEDLINE | ID: mdl-38723428

Connective tissues can be recognized as an important structural support element in muscles. Recent studies have also highlighted its importance in active force generation and transmission between muscles, particularly through the epimysium. In the present study, we aimed to investigate the impact of the endomysium, the connective tissue surrounding muscle fibers, on both passive and active force production. Pairs of skeletal muscle fibers were extracted from the extensor digitorum longus muscles of rats and, after chemical skinning, their passive and active force-length relationships were measured under two conditions: (i) with the endomysium between muscle fibers intact, and (ii) after its dissection. We found that the dissection of the endomysium caused force to significantly decrease in both active (by 22.2 % when normalized to the maximum isometric force; p < 0.001) and passive conditions (by 25.9 % when normalized to the maximum isometric force; p = 0.034). These findings indicate that the absence of endomysium compromises muscle fiber's not only passive but also active force production. This effect may be attributed to increased heterogeneity in sarcomere lengths, enhanced lattice spacing between myofilaments, or a diminished role of trans-sarcolemmal proteins due to dissecting the endomysium. Future investigations into the underlying mechanisms and their implications for various extracellular matrix-related diseases are warranted.


Muscle Fibers, Skeletal , Animals , Rats , Muscle Fibers, Skeletal/physiology , Rats, Wistar , Connective Tissue/physiology , Sarcomeres/physiology , Male , Muscle, Skeletal/physiology , Biomechanical Phenomena , Isometric Contraction/physiology , Muscle Contraction/physiology
5.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690930

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Cell Differentiation , Insulin-Like Growth Factor I , Muscle Contraction , Muscle Fibers, Skeletal , Phenotype , Humans , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Insulin-Like Growth Factor I/metabolism , Cells, Cultured , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Glucose/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology
6.
PLoS One ; 19(5): e0301690, 2024.
Article En | MEDLINE | ID: mdl-38701072

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Muscle Development , Sarcomeres , Animals , Mice , Cell Differentiation/genetics , Cell Line , Epigenesis, Genetic , Gene Knockout Techniques , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histones/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/cytology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Sarcomeres/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
7.
Scand J Med Sci Sports ; 34(6): e14668, 2024 Jun.
Article En | MEDLINE | ID: mdl-38802727

Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and ß (ERß) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERß content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERß and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.


Estrogen Receptor alpha , Estrogen Receptor beta , Muscle Fibers, Skeletal , Quadriceps Muscle , Receptors, Androgen , Resistance Training , Humans , Male , Resistance Training/methods , Female , Estrogen Receptor beta/metabolism , Estrogen Receptor alpha/metabolism , Young Adult , Receptors, Androgen/metabolism , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply , Quadriceps Muscle/diagnostic imaging , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Adult , Hypertrophy , Capillaries , Magnetic Resonance Imaging
8.
BMC Genomics ; 25(1): 514, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789922

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Antioxidants , Fishes , Resveratrol , Animals , Resveratrol/pharmacology , Fishes/metabolism , Fishes/growth & development , Fishes/genetics , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Nutrients/metabolism , Animal Feed/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Diet/veterinary , Gene Expression Profiling
9.
Acta Neuropathol Commun ; 12(1): 80, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790073

Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.


Hypertrophy , Muscle Fibers, Skeletal , Humans , Male , Female , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Adult , Child , Adolescent , Muscle Contraction/physiology , Proteomics , Young Adult , Child, Preschool , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology
10.
Elife ; 122024 May 02.
Article En | MEDLINE | ID: mdl-38695862

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mice, Knockout , Muscle Contraction , Nerve Tissue Proteins , Sarcomeres , Septins , Animals , Septins/metabolism , Septins/genetics , Sarcomeres/metabolism , Mice , Muscle Contraction/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Binding , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology
11.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Article En | MEDLINE | ID: mdl-38750477

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Cell Differentiation , Electroporation , Gene Silencing , Muscle Fibers, Skeletal , RNA, Small Interfering , Humans , Electroporation/methods , RNA, Small Interfering/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Cell Survival , Electrophoresis , Transfection/methods
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732106

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Diabetes Mellitus, Type 2 , Exercise , Muscle Fibers, Skeletal , Resistance Training , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Male , Exercise/physiology , Middle Aged , Female , Muscle Fibers, Skeletal/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Cytokines/metabolism , Cytokines/blood , Interleukin-8/metabolism , Interleukin-8/blood , Interleukin-10/metabolism , Interleukin-10/blood , Aged , Interleukin-15/metabolism , Interleukin-15/blood , Exercise Therapy/methods , Muscle Contraction , Muscle, Skeletal/metabolism , Myokines
13.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732549

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Catechols , Cyclopentane Monoterpenes , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Tumor Necrosis Factor-alpha , Animals , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Proteins/metabolism , Cyclopentane Monoterpenes/pharmacology , Catechols/pharmacology , Cell Line , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Development/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy/drug effects , Phenols/pharmacology , Cachexia/prevention & control , Culture Media, Conditioned/pharmacology , Aldehydes
14.
PLoS One ; 19(5): e0298827, 2024.
Article En | MEDLINE | ID: mdl-38722949

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Adipocytes , Glutathione Peroxidase , MAP Kinase Signaling System , Animals , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Adipocytes/metabolism , Adipocytes/cytology , Swine , Cell Differentiation/genetics , Cell Proliferation , Adipogenesis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
15.
Sci Adv ; 10(18): eadj8042, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691608

Overactivation of the transforming growth factor-ß (TGFß) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFß induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFß signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFß target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFß-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.


Histone-Lysine N-Methyltransferase , Muscle Fibers, Skeletal , Muscular Dystrophy, Duchenne , Signal Transduction , Transforming Growth Factor beta , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Transforming Growth Factor beta/metabolism , Humans , Animals , Cell Differentiation , Mice , Myoblasts/metabolism , Fibrosis , Gene Expression Regulation
16.
Mol Med Rep ; 30(1)2024 07.
Article En | MEDLINE | ID: mdl-38785149

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Cell Differentiation , Organelle Biogenesis , Plant Extracts , Proto-Oncogene Proteins c-akt , Saururaceae , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Mice , Cell Differentiation/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Cell Line , Saururaceae/chemistry , Cell Survival/drug effects , Myoblasts/metabolism , Myoblasts/drug effects , Myoblasts/cytology , Mitochondria/metabolism , Mitochondria/drug effects , Muscle Development/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/cytology
17.
Int J Exp Pathol ; 105(3): 100-113, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722178

Morphometry of striated muscle fibres is critical for monitoring muscle health and function. Here, we evaluated functional parameters of skeletal and cardiac striated muscle in two experimental models using the Morphometric Analysis of Muscle Fibre tool (MusMA). The collagen-induced arthritis model was used to evaluate the function of skeletal striated muscle and the non-alcoholic fatty liver disease model was used for cardiac striated muscle analysis. After euthanasia, we used haeamatoxylin and eosin stained sections of skeletal and cardiac muscle to perform muscle fibre segmentation and morphometric analysis. Morphometric analysis classified muscle fibres into six subpopulations: normal, regular hypertrophic, irregular hypertrophic, irregular, irregular atrophic and regular atrophic. The percentage of atrophic fibres was associated with lower walking speed (p = 0.009) and lower body weight (p = 0.026), respectively. Fibres categorized as normal were associated with maximum grip strength (p < 0.001) and higher march speed (p < 0.001). In the evaluation of cardiac striated muscle fibres, the percentage of normal cardiomyocytes negatively correlated with cardiovascular risk markers such as the presence of abdominal adipose tissue (p = .003), miR-33a expression (p = .001) and the expression of miR-126 (p = .042) Furthermore, the percentage of atrophic cardiomyocytes correlated significantly with the Castelli risk index II (p = .014). MusMA is a simple and objective tool that allows the screening of striated muscle fibre morphometry, which can complement the diagnosis of muscle diseases while providing functional and prognostic information in basic and clinical research.


Muscle Fibers, Skeletal , Animals , Male , Prognosis , Muscle Fibers, Skeletal/pathology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Myocytes, Cardiac/pathology , Heart Disease Risk Factors
18.
Int J Mol Sci ; 25(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38791317

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Cellular Senescence , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Cattle , Cellular Senescence/genetics , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Signal Transduction , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cells, Cultured
19.
Cient. dent. (Ed. impr.) ; 21(1): 1-5, abr.-2024.
Article Es | IBECS | ID: ibc-232711

Introducción: Para obtener una sonrisa ideal, es necesario que todas sus partes estén en armonía, mediante un equilibrio neurológico, muscular y esquelético. Así pues, la elaboración de un análisis facial y de sonrisa en el diagnóstico de ortodoncia, resulta de vital importancia, ya que la estética dental está muy relacionada conel tipo de sonrisa y el biotipo facial. Objetivo: determinar si existe asociación entre el biotipo facial y la posición del labio superior en la sonrisa. Material y métodos: el estudio es de tipo descriptivo, transversal y observacional. El universo de estudio fueron 1200 casos de la base de datos de la clínica de Posgrado de la Universidad Autónoma de Nayarit, México del año 2013 al 2023. La muestra fue de 120 pacientes pretratamiento de ortodoncia, analizando en ellos el biotipo facial y la altura de la línea de sonrisa. Se realizó la estadística descriptiva, pruebas de chi-cuadrado y V de Cramer. Resultados: el 34% presentó un biotipo braquifacial, el 31% dolicofacial y un 35% mesofacial. Se encontró en mayor porcentaje una línea de la sonrisa alta. En los pacientes dolicofaciales y mesofaciales la línea de sonrisa fue alta y en los pacientes braquifaciales fue media. La asociación entre el biotipo facial y la línea de sonrisa fue grande. Conclusiones: existe asociación entre el biotipo facial y la línea de sonrisa por lo que al realizar el diagnóstico en ortodoncia debe ser un factor a considerar. (AU)


Introduction: To obtain an ideal smile, it is necessary that all its parts are in harmony, through neurological, muscular and skeletal balance. Therefore, carrying out a facial and smile analysis in orthodontic diagnosis is of vital importance, since dental aesthetics is closely related to the type of smile, and the facial biotype. Objective: Determine if there is an association between facial biotype and the position of the upper lip in the smile. Material and Methods: The study is descriptive, cross-sectional and observational. The study was made of 1,200 cases from the database of the Postgraduate clinic of the Universidad Autónoma de Nayarit, Mexico from 2013 to 2023. The sample was 120 orthodontic pretreatment patients, analyzing their facial biotype and the height of the smile line. Descriptive statistics, chi square and Cramer’s V tests were performed. Results: 34% presented a brachyfacial biotype, 31% dolichofacial and 35% mesofacial. A high smile line was found in a higher percentage. In the dolichofacial and mesofacial patients the smile line was high and in the brachyfacial patients it was medium. The association between facial biotype and smile line was big. Conclusions: There is an association between the facial biotype and the smile line, so when making the orthodontic diagnosis it should be a factor to consider. (AU)


Humans , Smiling , Nervous System Diseases , Muscle Cells , Muscle Fibers, Skeletal , Orthodontics
20.
J Med Food ; 27(5): 385-395, 2024 May.
Article En | MEDLINE | ID: mdl-38574296

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Dexamethasone , Lactobacillus gasseri , Mice, Inbred BALB C , Muscle Fibers, Skeletal , Muscle Proteins , Muscle, Skeletal , Muscular Atrophy , Probiotics , Ubiquitin-Protein Ligases , Animals , Dexamethasone/adverse effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Mice , Female , Male , Muscle Proteins/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Lactobacillus gasseri/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Humans , Insulin-Like Growth Factor I/metabolism , TOR Serine-Threonine Kinases/metabolism
...