Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.945
Filter
1.
Methods Mol Biol ; 2835: 229-247, 2024.
Article in English | MEDLINE | ID: mdl-39105919

ABSTRACT

Skeletal muscle is a postmitotic tissue composed of contractile myofibers that are oriented and connected to different layers of connective tissue. Nevertheless, adult muscle fibers retain the capacity to regenerate in response to damage, activating the classical muscle stem cell compartment, namely, satellite cells (SCs), which are mitotically quiescent cells until required for growth or repair and are localized between the basal lamina and sarcolemma of myofibers. The transition of SCs from the quiescent state toward activation, commitment, and differentiation involves the genetic and epigenetic adaptation to novel biological functions, entailing dynamic changes in the protein expression profile. Interestingly, some of the activities and signaling regulating proliferation, commitment, differentiation, and survival/apoptosis of satellite cells have been also partially recapitulated in vitro, taking advantage of robust markers, reliable techniques, and reproducible protocols. Over the years, different techniques of muscular cell culture have been designed including primary cultures from embryonic or postnatal muscle, myogenic cell line, and three-dimensional (3D) skeletal muscle construct. Typical two-dimensional (2D) muscle cell culture cannot fully recapitulate the complexity of living muscle tissues, restricting their usefulness for physiological studies. The development of functional 3D culture models represents a valid alternative to overcome the limitations of already available in vitro model, increasing our understanding of the roles played by the various cell types and how they interact. In this chapter, the development of bidimensional and three-dimensional cell cultures have been described, improving the technical aspect of satellite cell isolation, the best culture-based conditions for muscle cell growth and differentiation, and the procedures required to develop a three-dimensional skeletal muscle construct.


Subject(s)
Cell Culture Techniques , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Cell Culture Techniques/methods , Cell Differentiation , Mice , Cell Culture Techniques, Three Dimensional/methods , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle Development , Cell Proliferation , Cells, Cultured
2.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926663

ABSTRACT

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Subject(s)
Fibroblast Growth Factor 5 , Gene Editing , Muscle Development , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Muscle Development/genetics , Sheep , Fibroblast Growth Factor 5/genetics , Fibroblast Growth Factor 5/metabolism , Cell Differentiation , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology
3.
STAR Protoc ; 5(2): 103109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38829736

ABSTRACT

Based on our hypothesis that myotubes exhibit a bistable response to insulin, here we present a protocol for finely measuring Akt phosphorylation in single myotubes under insulin stimulation. We describe steps to stably express a Förster resonance energy transfer (FRET)-based Akt biosensor in C2C12-derived myotubes and perform single-cell FRET imaging. This protocol highlights its potential for precision medicine in analyzing protein phosphorylation dynamics at the single-cell level. For complete details on the use and execution of this protocol, please refer to Akhtar et al.1.


Subject(s)
Fluorescence Resonance Energy Transfer , Insulin , Muscle Fibers, Skeletal , Fluorescence Resonance Energy Transfer/methods , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Insulin/metabolism , Insulin/pharmacology , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphorylation , Single-Cell Analysis/methods , Biosensing Techniques/methods
4.
Am J Physiol Cell Physiol ; 327(2): C415-C422, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912737

ABSTRACT

Although studies have identified characteristics of quiescent satellite cells (SCs), their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that is highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least 3 mo without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 h/doubling), have reduced Pax7 expression (threefold decrease in Pax7 fluorescence vs. quiescence), and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.NEW & NOTEWORTHY We provide a method to isolate quiescent satellite cells from skeletal muscle. These cells are highly Pax7-positive, exhibit a very slow proliferation rate, and are capable of being maintained in culture for months without a change in phenotype. The use of these cells by muscle researchers will allow for more detailed examinations of the factors affecting satellite cell quiescence/activation and provide a novel cell source for the regenerative medicine and cellular agriculture fields.


Subject(s)
Cell Differentiation , Cell Proliferation , PAX7 Transcription Factor , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Mice , Cell Differentiation/physiology , Cells, Cultured , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Cell Separation/methods , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Development/physiology , Male
5.
Tissue Cell ; 89: 102423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875923

ABSTRACT

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Reactive Oxygen Species , Rotenone , Animals , Reactive Oxygen Species/metabolism , Muscle Development/drug effects , Chick Embryo , Rotenone/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/drug effects , Myoblasts/cytology , Fibroblasts/metabolism , Fibroblasts/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
6.
EMBO J ; 43(15): 3090-3115, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839992

ABSTRACT

Drastic increases in myofiber number and size are essential to support vertebrate post-embryonic growth. However, the collective cellular behaviors that enable these increases have remained elusive. Here, we created the palmuscle myofiber tagging and tracking system for in toto monitoring of the growth and fates of ~5000 fast myofibers in developing zebrafish larvae. Through live tracking of individual myofibers within the same individuals over extended periods, we found that many larval myofibers readily dissolved during development, enabling the on-site addition of new and more myofibers. Remarkably, whole-body surveillance of multicolor-barcoded myofibers further unveiled a gradual yet extensive elimination of larval myofiber populations, resulting in near-total replacement by late juvenile stages. The subsequently emerging adult myofibers are not only long-lasting, but also morphologically and functionally distinct from the larval populations. Furthermore, we determined that the elimination-replacement process is dependent on and driven by the autophagy pathway. Altogether, we propose that the whole-body replacement of larval myofibers is an inherent yet previously unnoticed process driving organismic muscle growth during vertebrate post-embryonic development.


Subject(s)
Larva , Zebrafish , Animals , Zebrafish/growth & development , Larva/growth & development , Muscle Development , Autophagy , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology
8.
In Vitro Cell Dev Biol Anim ; 60(7): 740-747, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744772

ABSTRACT

Watching living cells through a microscope is much more exciting than seeing pictures of cells in high school and college textbooks. However, bringing cell cultures into the classroom is challenging for biology teachers since culturing cells requires sophisticated and expensive instruments such as a CO2 incubator and an inverted phase-contrast microscope. Here, we describe easy and affordable methods to culture and observe skeletal muscle cells using the L-15 culture medium, tissue culture flask, standard dry incubator, standard upright microscope, and modified Smartphone microscope. Watching natural living cells in a "Do-It-Yourself (DIY)" way may inspire more students' interest in cell biology.


Subject(s)
Cell Biology , Cell Culture Techniques , Schools , Humans , Cell Culture Techniques/methods , Cell Biology/education , Muscle, Skeletal/cytology , Universities , Students , Muscle Fibers, Skeletal/cytology
9.
In Vitro Cell Dev Biol Anim ; 60(7): 781-792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38724872

ABSTRACT

The presence of nuclear architectural abnormalities is a hallmark of the nuclear envelopathies, which are a group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations in the lamin A/C gene cause several diseases, named laminopathies, including muscular dystrophies, progeria syndromes, and lipodystrophy. A mouse model carrying with the LmnaH222P/H222P mutation (H222P) was shown to develop severe cardiomyopathy but only mild skeletal myopathy, although abnormal nuclei were observed in their striated muscle. In this report, we analyzed the abnormal-shaped nuclei in myoblasts and myotubes isolated from skeletal muscle of H222P mice, and evaluated the expression of nuclear envelope proteins in these abnormal myonuclei. Primary skeletal muscle cells from H222P mice proliferated and efficiently differentiated into myotubes in vitro, similarly to those from wild-type mice. During cell proliferation, few abnormal-shaped nuclei were detected; however, numerous markedly abnormal myonuclei were observed in myotubes from H222P mice on days 5 and 7 of differentiation. Time-lapse observation demonstrated that myonuclei with a normal shape maintained their normal shape, whereas abnormal-shaped myonuclei remained abnormal for at least 48 h during differentiation. Among the abnormal-shaped myonuclei, 65% had a bleb with a string structure, and 35% were severely deformed. The area and nuclear contents of the nuclear blebs were relatively stable, whereas the myocytes with nuclear blebs were actively fused within primary myotubes. Although myonuclei were markedly deformed, the deposition of DNA damage marker (γH2AX) or apoptotic marker staining was rarely observed. Localizations of lamin A/C and emerin were maintained within the blebs, strings, and severely deformed regions of myonuclei; however, lamin B1, nesprin-1, and a nuclear pore complex protein were absent in these abnormal regions. These results demonstrate that nuclear membranes from H222P skeletal muscle cells do not rupture and are resistant to DNA damage, despite these marked morphological changes.


Subject(s)
Cell Differentiation , Cell Nucleus , Lamin Type A , Muscle Fibers, Skeletal , Animals , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Lamin Type A/genetics , Lamin Type A/metabolism , Cell Nucleus/metabolism , Mice , Cell Proliferation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Myoblasts/metabolism , Myoblasts/pathology , Myoblasts/cytology , Muscle, Skeletal/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism
10.
BMC Genomics ; 25(1): 514, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789922

ABSTRACT

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Subject(s)
Antioxidants , Fishes , Resveratrol , Animals , Resveratrol/pharmacology , Fishes/metabolism , Fishes/growth & development , Fishes/genetics , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Nutrients/metabolism , Animal Feed/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Diet/veterinary , Gene Expression Profiling
11.
PLoS One ; 19(5): e0298827, 2024.
Article in English | MEDLINE | ID: mdl-38722949

ABSTRACT

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Subject(s)
Adipocytes , Glutathione Peroxidase , MAP Kinase Signaling System , Animals , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Adipocytes/metabolism , Adipocytes/cytology , Swine , Cell Differentiation/genetics , Cell Proliferation , Adipogenesis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
12.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750477

ABSTRACT

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Subject(s)
Cell Differentiation , Electroporation , Gene Silencing , Muscle Fibers, Skeletal , RNA, Small Interfering , Humans , Electroporation/methods , RNA, Small Interfering/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Cell Survival , Electrophoresis , Transfection/methods
13.
PLoS One ; 19(5): e0301690, 2024.
Article in English | MEDLINE | ID: mdl-38701072

ABSTRACT

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Subject(s)
Muscle Development , Sarcomeres , Animals , Mice , Cell Differentiation/genetics , Cell Line , Epigenesis, Genetic , Gene Knockout Techniques , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histones/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/cytology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Sarcomeres/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
14.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38785149

ABSTRACT

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Subject(s)
Cell Differentiation , Organelle Biogenesis , Plant Extracts , Proto-Oncogene Proteins c-akt , Saururaceae , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Mice , Cell Differentiation/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Cell Line , Saururaceae/chemistry , Cell Survival/drug effects , Myoblasts/metabolism , Myoblasts/drug effects , Myoblasts/cytology , Mitochondria/metabolism , Mitochondria/drug effects , Muscle Development/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/cytology
15.
Acta Biomater ; 180: 279-294, 2024 05.
Article in English | MEDLINE | ID: mdl-38604466

ABSTRACT

The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.


Subject(s)
Tendons , Tenocytes , Tissue Engineering , Humans , Tendons/cytology , Tendons/physiology , Tissue Engineering/methods , Tenocytes/cytology , Tenocytes/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Models, Biological , Coculture Techniques , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Myotendinous Junction
16.
ACS Biomater Sci Eng ; 10(5): 3500-3512, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38563398

ABSTRACT

Cultured meat is a meat analogue produced by in vitro cell culture, which can replace the conventional animal production system. Tissue engineering using myogenic cells and biomaterials is a core technology for cultured meat production. In this study, we provide an efficient and economical method to produce skeletal muscle tissue-like structures by culturing chicken myoblasts in a fetal bovine serum (FBS)-free medium and plant-derived scaffolds. An FBS-free medium supplemented with 10% horse serum (HS) and 5% chick embryo extract (CEE) was suitable for the proliferation and differentiation of chicken myoblasts. Decellularized celery scaffolds (Decelery), manufactured using 1% sodium dodecyl sulfate (SDS), were nontoxic to cells and supported myoblast proliferation and differentiation. Decelery could support the 3D culture of chicken myoblasts, which could adhere and coagulate to the surface of the Decelery and form MYH1E+ and F-actin+ myotubes. After 2 weeks of culture on Decelery, fully grown myoblasts completely covered the surface of the scaffolds and formed fiber-like myotube structures. They further differentiated to form spontaneously contracting myofiber-like myotubes on the scaffold surface, indicating that the Decelery scaffold system could support the formation of a functional mature myofiber structure. In addition, as the spontaneously contracting myofibers did not detach from the surface of the Decelery, the Decelery system is a suitable biomaterial for the long-term culture and maintenance of the myofiber structures.


Subject(s)
Cell Differentiation , Chickens , Muscle, Skeletal , Myoblasts , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Muscle, Skeletal/cytology , Tissue Engineering/methods , Myoblasts/cytology , Myoblasts/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chick Embryo , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Cells, Cultured
17.
Dev Cell ; 59(11): 1457-1474.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38569550

ABSTRACT

The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.


Subject(s)
Imaging, Three-Dimensional , Muscle, Skeletal , Regeneration , Animals , Regeneration/physiology , Mice , Muscle, Skeletal/physiology , Imaging, Three-Dimensional/methods , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Development/physiology , Stem Cells/cytology , Stem Cells/metabolism , Basement Membrane/metabolism
18.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Article in English | MEDLINE | ID: mdl-38670641

ABSTRACT

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Subject(s)
Calcium Carbonate , Cell Differentiation , Mesenchymal Stem Cells , Muscle Fibers, Skeletal , Osteogenesis , Weightlessness , Humans , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Osteogenesis/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Calcium Carbonate/chemistry , Cells, Cultured , Space Flight , Mice
19.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604883

ABSTRACT

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Muscle Development , Muscle Fibers, Skeletal , Muscle, Skeletal , Signal Transduction , Tissue Engineering , Cell Differentiation/drug effects , Animals , Tissue Engineering/methods , Mice , Bone Morphogenetic Proteins/metabolism , Signal Transduction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle Development/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Cell Line , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Tissue Scaffolds/chemistry
20.
Sci Rep ; 14(1): 9370, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653980

ABSTRACT

Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.


Subject(s)
Cell Differentiation , Muscle, Skeletal , Stem Cells , Animals , Swine , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Muscle Development , Cells, Cultured , Cell Culture Techniques/methods , Cell Proliferation , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL