Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.109
Filtrar
1.
Sci Rep ; 14(1): 15449, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965392

RESUMO

Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.


Assuntos
Hiperuricemia , Metabolômica , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Ratos , Metabolômica/métodos , Ácido Úrico/sangue , Masculino , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Xantina Oxidase/metabolismo , Modelos Animais de Doenças
2.
J Food Sci ; 89(7): 4192-4204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829742

RESUMO

Opuntia ficus-indica fruit (OFI) is rich in bioactive compounds, which can promote human health. In this work, the purified OFI extract was prepared from OFI and its bioactivities were investigated. Xanthine oxidase (XOD) and α-glucosidase (α-Glu) inhibitors of the purified OFI extract were screened and identified by bio-affinity ultrafiltration combined with UPLC-QTRAP-MS/MS technology. The inhibitory effect of these inhibitors on enzymes were verified, and the potential mechanism of action and binding sites of inhibitors with enzymes were revealed based on molecular docking. The results showed that the total phenolic content of the purified OFI extract was 355.03 mg GAE/g DW, which had excellent antioxidant activity. Additionally, the extract had a certain inhibitory effect on XOD (IC50 = 199.00 ± 0.14 µg/mL) and α-Glu (IC50 = 159.67 ± 0.01 µg/mL). Seven XOD inhibitors and eight α-Glu inhibitors were identified. Furthermore, XOD and α-Glu inhibition experiments in vitro confirmed that inhibitors such as chlorogenic acid, taxifolin, and naringenin had significant inhibitory effects on XOD and α-Glu. The molecular docking results indicated that inhibitors could bind to the corresponding enzymes and had strong binding force. These findings demonstrate that OFI contains potential substances for the treatment of hyperuricemia and hyperglycemia.


Assuntos
Frutas , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Opuntia , Extratos Vegetais , Xantina Oxidase , alfa-Glucosidases , Xantina Oxidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Opuntia/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Espectrometria de Massas em Tandem/métodos , Fenóis/farmacologia , Fenóis/química , Flavanonas/farmacologia
3.
Biosens Bioelectron ; 261: 116510, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905859

RESUMO

The discovery of enzyme inhibitors from natural products is a crucial aspect in the development of therapeutic drugs. However, the complexity of natural products presents a challenge in developing simple and efficient methods for inhibitor screening. Herein, we have developed an integrated analytical model for screening xanthine oxidase (XOD) inhibitors that combines simplicity, accuracy, and efficiency. This model utilizes a colorimetric sensor and affinity chromatography technology with immobilized XOD. The colorimetric sensor procedure can quickly identify whether there are active components in complex samples. Subsequently, the active components in the samples identified by the colorimetric sensor procedure were further captured, separated, and identified through affinity chromatography. The integrated analytical model can significantly enhance the efficiency and accuracy of inhibitor screening. The proposed method was applied to screen for an activity inhibitor of XOD in five natural medicines. As a result, a potential active ingredient for XOD, polydatin, was successfully identified from Polygoni Cuspidati Rhizoma et Radix. This work is anticipated to offer new insights for the screening of enzyme inhibitors from natural medicines.


Assuntos
Técnicas Biossensoriais , Cromatografia de Afinidade , Colorimetria , Inibidores Enzimáticos , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/química , Cromatografia de Afinidade/métodos , Colorimetria/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Avaliação Pré-Clínica de Medicamentos , Humanos
4.
Int J Med Mushrooms ; 26(7): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884262

RESUMO

Hyperuricemia (HUA) is characterized by abnormally elevated levels of serum uric acid, the product of purine metabolism. The primary symptom of HUA is gout; however, asymptomatic HUA is associated with complications such as hypertension, kidney disease, cardiovascular disease, and metabolic syndrome. The activation of xanthine oxidase (XO), a pivotal enzyme in uric acid biosynthesis, is coupled with extensive reactive oxygen species generation, leading to inflammatory responses, and triggers the development of HUA and its complications. In clinical practice, XO inhibitors are primarily used to treat HUA; however, their prolonged use is accompanied by serious adverse effects. Mushrooms and their bioactive constituents have shown promising anti-HUA activities in both in vitro and in vivo studies, including inhibition of urate production, modulation of renal urate transporters, enhancement of intestinal uric acid excretion, and antioxidant, anti-inflammatory, and antimetabolic syndrome properties. Clinical trials are necessary to validate the beneficial effects and safety of mushrooms in preventing or alleviating HUA and attenuating the associated complications. This review presents contemporary insights into the pathogenesis of HUA, the bioactive components of mushrooms, their therapeutic potential, and the underlying mechanisms involved in ameliorating HUA.


Assuntos
Agaricales , Hiperuricemia , Ácido Úrico , Hiperuricemia/tratamento farmacológico , Humanos , Agaricales/química , Ácido Úrico/metabolismo , Animais , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823536

RESUMO

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Assuntos
Inibidores Enzimáticos , Luteolina , Simulação de Acoplamento Molecular , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Luteolina/química , Luteolina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Simulação de Dinâmica Molecular , Flores/química , Alopurinol/farmacologia , Alopurinol/química , Humanos , Sítios de Ligação
6.
Phytochemistry ; 224: 114169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825030

RESUMO

Continued interest in the bioactive alkaloids led to the isolation of five undescribed alkaloids (1-5), ophiorglucidines A-E, and seven known analogues (6-12) from the water-soluble fraction of Ophiorrhiza japonica. The structures were elucidated based on spectroscopic data and quantum calculations as well as X-ray crystallographic analysis. The structure of 1 was characterized as a hexacyclic skeleton including a double bridge linking the indole and the monoterpene moieties, which is the first report of a single crystal with this type of structure. Moreover, the inhibitory effect of zwitterionic indole alkaloid glycosides on xanthine oxidase was found for the first time. The alkaloids 2 and 3, both of which have a pentacyclic zwitterionic system, were more active than the reference inhibitor, allopurinol (IC50 = 11.1 µM) with IC50 values of 1.0 µM, and 2.5 µM, respectively. Structure-activity relationships analyses confirmed that the carbonyl group at C-14 was a key functional group responsible for the inhibitory effects of these alkaloids.


Assuntos
Inibidores Enzimáticos , Alcaloides Indólicos , Monoterpenos , Rubiaceae , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Rubiaceae/química , Relação Estrutura-Atividade , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Monoterpenos/química , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Estrutura Molecular , Relação Dose-Resposta a Droga , Modelos Moleculares , Cristalografia por Raios X
7.
J Ethnopharmacol ; 333: 118410, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38848973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Qiling granules (FQG), derived from the traditional Qiling Decoction with a longstanding clinical history, is utilized for the treatment of hyperuricemia (HUA). FQG is formulated with a combination of seven Chinese herbs based on the principles of traditional Chinese medicine (TCM) theories. Clinical evidence indicates that FQG exhibits favorable therapeutic effects in reducing uric acid (UA) levels and attenuating renal damage. AIM OF THIS STUDY: To elucidate the potential active components and pharmacological mechanism of FQG in the treatment of HUA, and to provide an experimental basis for the development of efficient and low-toxicity TCM for HUA treatment. MATERIALS AND METHODS: A HUA rat model induced by potassium oxonate and adenine was established to initially evaluate the hypouricemic effects of FQG. Chemical analyses were conducted using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to investigate the active components and mechanism of FQG in the treatment of HUA. Potential Xanthine oxidase (XOD) inhibitors were screened from FQG based on ultrafiltration liquid chromatography and mass spectrometry (UF-LC-MS). Molecular docking, surface plasmon resonance (SPR) and circular dichroism (CD) spectroscopy were applied to validate the interactions between the active components and XOD. RESULTS: In comparison to the model group, treatment with FQG significantly decreased serum UA, serum creatinine (CREA), serum blood urea nitrogen (BUN), and liver XOD activity. Additionally, the FQG administration notably ameliorated HUA-induced renal injury in rats. Through the pharmacodynamics of the HUA rat models and network pharmacology, it was found that XOD was a key pathway enzyme in UA metabolism. 18 XOD inhibitors were screened from FQG by UF-LC-MS, and 11 compounds with strong affinity were verified by SPR, molecular docking and CD spectroscopy. CONCLUSION: In summary, flavonoids, organic acids and saponins may be the active components in FQG that alleviate HUA. The primary mechanism of FQG involves inhibiting XOD enzyme activity in the plasma to reduce UA production, alleviating renal tubular epithelial cell necrosis, tubulointerstitial injury, fibrosis, and urate deposition, ultimately exerting a therapeutic effect on HUA.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Xantina Oxidase , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Animais , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Ácido Úrico/sangue , Modelos Animais de Doenças , Ácido Oxônico , Inibidores Enzimáticos/farmacologia , Farmacologia em Rede
8.
Arch Biochem Biophys ; 758: 110078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944139

RESUMO

About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1ß and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.


Assuntos
Hiperuricemia , Hipóxia , Rim , Fígado , Estresse Oxidativo , Hiperuricemia/metabolismo , Animais , Masculino , Ratos , Fígado/metabolismo , Fígado/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Rim/metabolismo , Rim/patologia , Altitude , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Ratos Sprague-Dawley , Xantina Oxidase/metabolismo , Doença da Altitude/metabolismo , Doença da Altitude/complicações , Doença da Altitude/fisiopatologia
9.
Front Immunol ; 15: 1362642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745649

RESUMO

Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hiperuricemia , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Ratos Sprague-Dawley
10.
Brain Res Bull ; 213: 110973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723694

RESUMO

Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.


Assuntos
Alopurinol , Epilepsia , Hiperuricemia , Hiperuricemia/tratamento farmacológico , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidores , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
11.
Cardiol J ; 31(3): 479-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771265

RESUMO

Xanthine oxidase inhibitors, including allopurinol and febuxostat, are the first-line treatment of hyperuricemia. This meta-analysis investigated the association between urate-lowering therapy and all-cause mortality in different chronic diseases to match its users and non-users in a real-world setting. Overall, 11 studies were included, which reported adjusted hazard ratios for all-cause mortality over at least 12 months. Meta-analysis of all included studies showed no effect of the therapy on all-cause mortality. However, subgroup analyses showed its beneficial effect in patients with chronic kidney disease (14% risk reduction) and hyperuricemia (14% risk reduction), but not in patients with heart failure (28% risk increase). Urate-lowering therapy reduces all-cause mortality among patients with hyperuricemia and chronic kidney disease, but it seems to increase mortality in patients with heart failure and should be avoided in this subgroup.


Assuntos
Causas de Morte , Hiperuricemia , Xantina Oxidase , Humanos , Xantina Oxidase/antagonistas & inibidores , Hiperuricemia/tratamento farmacológico , Hiperuricemia/mortalidade , Hiperuricemia/sangue , Causas de Morte/tendências , Inibidores Enzimáticos/uso terapêutico , Fatores de Risco , Alopurinol/uso terapêutico , Supressores da Gota/uso terapêutico , Febuxostat/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Ácido Úrico/sangue , Insuficiência Renal Crônica/mortalidade , Adulto
12.
Chem Biol Interact ; 396: 111034, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723799

RESUMO

This study aimed to explore the antioxidant and prooxidative activity of two natural furanocoumarin derivatives, Bergaptol (4-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, BER) and Xanthotoxol (9-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, XAN). The collected thermodynamic and kinetic data demonstrate that both compounds possess substantial antiradical activity against HO• and CCl3OO• radicals in physiological conditions. BER exhibited better antiradical activity in comparison to XAN, which can be attributed to the enhanced deprotonation caused by the positioning of the -OH group on the psoralen ring. In contrast to highly reactive radical species, newly formed radical species BER• and XAN• exhibited negligible reactivity towards the chosen constitutive elements of macromolecules (fatty acids, amino acids, nucleobases). Furthermore, in the presence of O2•─, the ability to regenerate newly formed radicals BER• and XAN• was observed. Conversely, in physiological conditions in the presence of Cu(II) ions, both compounds exhibit prooxidative activity. Nevertheless, the prooxidative activity of both compounds is less prominent than their antioxidant activity. Furthermore, it has been demonstrated that anionic species can engage in the creation of a chelate complex, which restricts the reduction of metal ions when reducing agents are present (O2•─ and Asc─). Moreover, studies have demonstrated that these chelating complexes can be coupled with other radical species, hence enhancing their ability to inactivate radicals. Both compounds exhibited substantial inhibitory effects against enzymes involved in the direct or indirect generation of ROS: Xanthine Oxidase (XOD), Lipoxygenase (LOX), Myeloperoxidase (MPO), NADPH oxidase (NOX).


Assuntos
Antioxidantes , Furocumarinas , Furocumarinas/química , Furocumarinas/farmacologia , Cinética , Antioxidantes/química , Antioxidantes/farmacologia , Teoria da Densidade Funcional , Oxirredução , Termodinâmica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lipoxigenase/metabolismo , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
13.
J Agric Food Chem ; 72(21): 12083-12099, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757561

RESUMO

The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.


Assuntos
Hiperuricemia , Peptídeos , Atum , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Camundongos , Humanos , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/farmacologia , Masculino , Proteínas de Peixes/química , Xantina Oxidase/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Linhagem Celular , Rim/efeitos dos fármacos , Rim/metabolismo
14.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691887

RESUMO

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Assuntos
Ácidos Carboxílicos , Desenho de Fármacos , Inibidores Enzimáticos , Isoxazóis , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Isoxazóis/química , Isoxazóis/farmacologia , Isoxazóis/síntese química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntese química , Estrutura Molecular , Humanos , Simulação de Acoplamento Molecular , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Relação Dose-Resposta a Droga
15.
J Pharm Biomed Anal ; 246: 116164, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776585

RESUMO

Evaluating the quality of herbal medicine based on the content and activity of its main components is highly beneficial. Developing an eco-friendly determination method has significant application potential. In this study, we propose a new method to simultaneously predict the total flavonoid content (TFC), xanthine oxidase inhibitory (XO) activity, and antioxidant activity (AA) of Prunus mume using near-infrared spectroscopy (NIR). Using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetric method, uric acid colorimetric method, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) free radical scavenging activity as reference methods, we analyzed TFC, XO, and AA in 90 P. mume samples collected from different locations in China. The solid samples were subjected to NIR. By employing spectral preprocessing and optimizing spectral bands, we established a rapid prediction model for TFC, XO, and AA using partial least squares regression (PLS). To improve the model's performance and eliminate irrelevant variables, competitive adaptive reweighted sampling (CARS) was used to calculate the pretreated full spectrum. Evaluation model indicators included the root mean square error of cross-validation (RMSECV) and determination coefficient (R2) values. The TFC, XO, and AA model, combining optimal spectral preprocessing and spectral bands, had RMSECV values of 0.139, 0.117, and 0.121, with RCV2 values exceeding 0.92. The root mean square error of prediction (RMSEP) for the TFC, XO, and AA model on the prediction set was 0.301, 0.213, and 0.149, with determination coefficient (RP2) values of 0.915, 0.933, and 0.926. The results showed a strong correlation between NIR with TFC, XO, and AA in P. mume. Therefore, the established model was effective, suitable for the rapid quantification of TFC, XO, and AA. The prediction method is simple and rapid, and can be extended to the study of medicinal plant content and activity.


Assuntos
Antioxidantes , Flavonoides , Prunus , Espectroscopia de Luz Próxima ao Infravermelho , Xantina Oxidase , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Flavonoides/análise , Prunus/química , Xantina Oxidase/antagonistas & inibidores , Antioxidantes/análise , Análise dos Mínimos Quadrados , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , China
16.
Ann Med ; 56(1): 2352022, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753584

RESUMO

Uric acid (UA) levels in blood serum have been associated with hypertension, indicating a potential causal relationship between high serum UA levels and the progression of hypertension. Therefore, the reduction of serum UA level is considered a potential strategy for lowering and mitigating blood pressure. If an individual is at risk of developing or already manifesting elevated blood pressure, this intervention could be an integral part of a comprehensive treatment plan. By addressing hyperuricaemia, practitioners may subsidize the optimization of blood pressure regulation, which illustrates the importance of addressing UA levels as a valuable strategy within the broader context of hypertension management. In this analysis, we outlined the operational principles of effective xanthine oxidase inhibitors for the treatment of hyperuricaemia and hypertension, along with an exploration of the contribution of nanotechnology to this field.


Assuntos
Hipertensão , Hiperuricemia , Ácido Úrico , Xantina Oxidase , Humanos , Hiperuricemia/tratamento farmacológico , Hipertensão/tratamento farmacológico , Ácido Úrico/sangue , Xantina Oxidase/antagonistas & inibidores , Pressão Sanguínea/efeitos dos fármacos , Nanotecnologia/métodos , Anti-Hipertensivos/uso terapêutico
17.
J Ethnopharmacol ; 332: 118362, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768838

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In ancient times, ginseng was used for hyperuricemia treatment as described in the classic traditional Chinese medical text Shang Han Lun. Recent studies have shown that common ginsenosides and rare ginsenosides (RGS) are the main active compounds in ginseng. RGS have higher activity and are less studied in the treatment of hyperuricemia. AIM OF THE STUDY: To determine whether RGS prevents and ameliorates potassium oxonate(PO)-induced hyperuricemia and concomitant spermatozoa damage in mice and the possible underlying mechanisms. MATERIALS AND METHODS: Potassium oxonate (PO, 300 mg/kg) induced hyperuricemia in mice via the oral administration of RGS (50, 100, or 200 mg/kg) or allopurinol (ALL, 5 mg/kg) for 35 days. Uric acid (UA) and xanthine oxidase (XO) levels were measured to assess the degree of histopathological damage in the liver, kidney, and testis, and renal creatinine (CRE), urea nitrogen (BUN), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and inflammatory factor (IL-1ß) levels were measured to calculate the sperm density. Mechanisms were also explored based on blood and urine metabolomics and the gut microbiota. RESULTS: In this study, we demonstrated that RGS containing Rg3, Rk1, Rg6, and Rg5 could reduce serum UA levels, inhibit serum and hepatic XO activity, reduce renal CRE and BUN levels, further restore renal SOD and GSH activities, reduce the accumulation of MDA in the kidneys, and attenuate the production of renal IL-1ß. RGS was able to restore sperm density. Metabolomic analysis revealed that RGS improved sphingolipid metabolism, pyrimidine metabolism, and other metabolic pathways. 16S rDNA sequencing revealed that RGS could increase gut microbial diversity, restore the Firmicutes/Bacteroidetes (F/B) ratio, and adjust the intestinal microbial balance. Spearman's correlation analysis revealed a correlation between differentially metabolites and the gut microbiota. Lactobacillus and Akkermansia are the core genera. CONCLUSION: RGS can be a candidate for the prevention and amelioration of hyperuricemia and concomitant sperm damage. Its mechanism of action is closely related to sphingolipid metabolism, pyrimidine metabolism, and the modulation of gut microbiota, such as Lactobacillus and Akkermansia.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Hiperuricemia , Metabolômica , Espermatozoides , Animais , Masculino , Hiperuricemia/tratamento farmacológico , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Camundongos , Ácido Oxônico , Xantina Oxidase/metabolismo , Ácido Úrico/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
18.
Mol Med Rep ; 30(2)2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38818832

RESUMO

The present review expounds the advancements in the application and mechanisms of flavonoids in gouty arthritis, highlighting their significance in managing the disease. Gouty arthritis is among the most common and severe inflammatory diseases, caused by hyperuricemia and the deposition of sodium urate crystals in the joints and surrounding tissues, posing a serious threat to human life and health. Flavonoids, extracted from various herbs, have attracted significant attention due to their efficacy in improving gouty arthritis. The present study systematically reviews the in vivo studies and in vitro animal studies on flavonoids from herbal medicines for the treatment of gouty arthritis that have been previously published in the PubMed, ScienceDirect, Google Scholar and China National Knowledge Infrastructure databases between 2000 and 2023. The review of the literature indicated that flavonoids can improve gouty arthritis through multiple mechanisms. These include lowering xanthine oxidase activity, inhibiting uric acid (UA) synthesis, regulating UA transporters to promote UA excretion, reducing the inflammatory response and improving oxidative stress. These mechanisms predominantly involve regulating the NOD­like receptor 3 inflammasome, the Toll­like receptor 4/myeloid differentiation factor 88/nuclear factor­κB signaling pathway, and the levels of UA transporter proteins, namely recombinant urate transporter 1, glucose transporter 9, organic anion transporter (OAT)1 and OAT3. Various flavonoids used in traditional Chinese medicine hold therapeutic promise for gouty arthritis and are anticipated to pave the way for novel pharmaceuticals and clinical applications.


Assuntos
Artrite Gotosa , Flavonoides , Ácido Úrico , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Humanos , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Flavonoides/química , Animais , Ácido Úrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo
19.
Eur Rev Med Pharmacol Sci ; 28(7): 2817-2826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639521

RESUMO

OBJECTIVE: Testicular ischemia-reperfusion induced by testicular torsion-detorsion increases the level of reactive oxygen species, leading to testicular damage. Allicin, one of the most active ingredients in garlic, is a significant exogenous antioxidant. In the research, the efficacy of allicin in treating testicular ischemia-reperfusion injury was assessed. MATERIALS AND METHODS: The study included sixty Sprague-Dawley male rats. Three groups with 20 rats per group were created as follows: control group, testicular ischemia/reperfusion-induced group, and testicular ischemia-reperfusion plus treatment with allicin group. The control group underwent a sham operation of the left testis without other interventions. In the testicular ischemia/reperfusion-induced group, rat left testis was subjected to 720° torsion for two hours and then detorsion. In the allicin-treated group, in addition to testicular ischemia-reperfusion, 50 mg/kg of allicin was injected intraperitoneally, starting immediately following detorsion. Testicular tissue samples were obtained to measure the protein expression of xanthine oxidase, which is a major source of reactive oxygen species formation, malondialdehyde level (a reliable marker of reactive oxygen species), and testicular spermatogenic function. RESULTS: Testicular ischemia-reperfusion significantly increased the expression of xanthine oxidase and malondialdehyde levels in ipsilateral testes while reducing testicular spermatogenic function. The expression of xanthine oxidase and malondialdehyde levels were significantly lower in ipsilateral testes, whereas testicular spermatogenic function in the allicin-treated group was significantly higher compared with those in the testicular ischemia-reperfusion group. CONCLUSIONS: Our findings indicate that allicin administration improves ischemia/reperfusion-induced testicular damage by limiting reactive oxygen species generation via inhibition of xanthine oxidase expression.


Assuntos
Dissulfetos , Traumatismo por Reperfusão , Torção do Cordão Espermático , Ácidos Sulfínicos , Ratos , Masculino , Animais , Humanos , Torção do Cordão Espermático/tratamento farmacológico , Torção do Cordão Espermático/complicações , Torção do Cordão Espermático/metabolismo , Ratos Sprague-Dawley , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testículo , Traumatismo por Reperfusão/metabolismo , Antioxidantes/farmacologia , Isquemia/metabolismo , Malondialdeído/metabolismo
20.
Biomolecules ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672506

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder associated with a loss of dopamine neurons in the substantia nigra. The diagnosis of PD is sensitive since it shows clinical features that are common with other neurodegenerative diseases. In addition, most symptoms arise at the late stage of the disease, where most dopaminergic neurons are already damaged. Several studies reported that oxidative stress is a key modulator in the development of PD. This condition occurs due to excess reactive oxygen species (ROS) production in the cellular system and the incapability of antioxidants to neutralize it. In this study, we focused on the pathology of PD by measuring serum xanthine oxidase (XO) activity, which is an enzyme that generates ROS. Interestingly, the serum XO activity of patients with PD was markedly upregulated compared to patients with other neurological diseases (ONDs) as a control. Moreover, serum XO activity in patients with PD showed a significant correlation with the disease severity based on the Hoehn and Yahr (HY) stages. The investigation of antioxidant status also revealed that serum uric acid levels were significantly lower in the severe group (HY ≥ 3) than in the ONDs group. Together, these results suggest that XO activity may contribute to the development of PD and might potentially be a biomarker for determining disease severity in patients with PD.


Assuntos
Antioxidantes , Doença de Parkinson , Ácido Úrico , Xantina Oxidase , Humanos , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Xantina Oxidase/sangue , Xantina Oxidase/metabolismo , Masculino , Feminino , Idoso , Antioxidantes/metabolismo , Pessoa de Meia-Idade , Ácido Úrico/sangue , Biomarcadores/sangue , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA