Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 36(2): 216-227, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29132753

RESUMO

Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too expensive. Typically, downstream processing of industrial biotechnological bulk products accounts for 20-40% of the total production costs, while for a microalgae multi-product biorefinery the costs are substantially higher (50-60%). These costs are high due to the lack of appropriate and mild technologies to access the different product fractions such as proteins, carbohydrates, and lipids. To reduce the costs, simplified processes need to be developed for the main unit operations including harvesting, cell disruption, extraction, and possibly fractionation.


Assuntos
Biotecnologia/economia , Filtração/métodos , Extração Líquido-Líquido/métodos , Microalgas/química , Proteínas de Algas/isolamento & purificação , Biocombustíveis/economia , Biomassa , Biotecnologia/métodos , Carboidratos/isolamento & purificação , Filtração/economia , Floculação , Humanos , Líquidos Iônicos/química , Lipídeos/isolamento & purificação , Extração Líquido-Líquido/economia , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Micro-Ondas , Sonicação/economia , Sonicação/métodos
2.
J Biotechnol ; 225: 10-7, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27002231

RESUMO

A mechanistic study was performed to evaluate the effect of salinity on cationic polymeric flocculants, that are used for the harvesting of microalgae. The polyacrylamide Synthofloc 5080H and the polysaccharide Chitosan were employed for the flocculation of Neochloris oleoabundans. In seawater conditions, a maximum biomass recovery of 66% was obtained with a dosage of 90mg/L Chitosan. This recovery was approximately 25% lower compared to Synthofloc 5080H reaching recoveries greater than 90% with dosages of 30mg/L. Although different recoveries were obtained with both flocculants, the polymers exhibit a similar apparent polymer length, as was evaluated from viscosity measurements. While both flocculants exhibit similar polymer lengths in increasing salinity, the zeta potential differs. This indicates that polymeric charge dominates flocculation. With increased salinity, the effectivity of cationic polymeric flocculants decreases due to a reduction in cationic charge. This mechanism was confirmed through a SEM analysis and additional experiments using flocculants with various charge densities.


Assuntos
Cátions/química , Clorófitas/fisiologia , Polímeros/química , Biomassa , Clorófitas/química , Clorófitas/metabolismo , Floculação , Microalgas/química , Microalgas/metabolismo , Microalgas/fisiologia , Salinidade
3.
Bioresour Technol ; 198: 797-802, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454366

RESUMO

A mechanistic mathematical model was developed to predict the performance of cationic polymers for flocculating salt water cultivated microalgae. The model was validated on experiments carried out with Neochloris oleoabundans and three different commercial flocculants (Zetag 7557®, Synthofloc 5080H® and SNF H536®). For a wide range of biomass concentrations (0.49-1.37 g L(-1)) and flocculant dosages (0-150 mg L(-1)) the model simulations predicted well the optimal flocculant-to-biomass ratio between 43 and 109 mgflocculant/gbiomass. At optimum conditions biomass recoveries varied between 88% and 99%. The cost of the usage of commercial available flocculants is estimated to range between 0.15$/kgbiomass and 0.49$/kgbiomass.


Assuntos
Cátions/química , Clorófitas , Floculação , Microalgas , Polímeros/química , Biomassa , Clorófitas/química , Clorófitas/metabolismo , Microalgas/química , Microalgas/metabolismo
4.
Bioresour Technol ; 169: 804-807, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25113884

RESUMO

Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.


Assuntos
Organismos Aquáticos/metabolismo , Microalgas/metabolismo , Polímeros/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Biomassa , Cátions , Floculação/efeitos dos fármacos , Microalgas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA