Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15519, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664095

RESUMO

State-of-the-art ultra-sensitive blood glucose-monitoring biosensors, based on glucose oxidase (GOx) covalently linked to a single layer graphene (SLG), will be a valuable next generation diagnostic tool for personal glycemic level management. We report here our observations of sensor matrix structure obtained using a multi-physics approach towards analysis of small-angle neutron scattering (SANS) on graphene-based biosensor functionalized with GOx under different pH conditions for various hierarchical GOx assemblies within SLG. We developed a methodology to separately extract the average shape of GOx molecules within the hierarchical assemblies. The modeling is able to resolve differences in the average GOx dimer structure and shows that treatment under different pH conditions lead to differences within the GOx at the dimer contact region with SLG. The coupling of different analysis methods and modeling approaches we developed in this study provides a universal approach to obtain detailed structural quantifications, for establishing robust structure-property relationships. This is an essential step to obtain an insight into the structure and function of the GOx-SLG interface for optimizing sensor performance.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose Oxidase/química , Glucose/análise , Grafite/química , Nanocompostos/química , Técnicas Eletroquímicas
2.
Microb Cell Fact ; 18(1): 172, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601209

RESUMO

BACKGROUND: α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. RESULTS: The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-D-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with ß-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. CONCLUSIONS: ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.


Assuntos
Rafinose/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , alfa-Galactosidase/biossíntese , Cinética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato , alfa-Galactosidase/química
3.
Front Microbiol ; 10: 405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899250

RESUMO

Molasses are sub-products of the sugar industry, rich in sucrose and containing other sugars like raffinose, glucose, and fructose. Alpha-galactosidases (EC. 3.2.1.22) catalyze the hydrolysis of alpha-(1,6) bonds of galactose residues in galacto-oligosaccharides (melibiose, raffinose, and stachyose) and complex galactomannans. Alpha-galactosidases have important applications, mainly in the food industry but also in the pharmaceutical and bioenergy sectors. However, the cost of the enzyme limits the profitability of most of these applications. The use of cheap sub-products, such as molasses, as substrates for production of alpha-galactosidases, reduces the cost of the enzymes and contributes to the circular economy. Alpha-galactosidase is a specially indicated bioproduct since, at the same time, it allows to use the raffinose present in molasses. This work describes the development of a two-step system for the valuation of beet molasses, based on their use as substrate for alpha-galactosidase and bioethanol production by Saccharomyces cerevisiae. Since this yeast secretes high amounts of invertase, to avoid congest the secretory route and to facilitate alpha-galactosidase purification from the culture medium, a mutant in the SUC2 gene (encoding invertase) was constructed. After a statistical optimization of culture conditions, this mutant yielded a very high rate of molasses bioconversion to alpha-galactosidase. In the second step, the SUC2 wild type yeast strain fermented the remaining sucrose to ethanol. A procedure to recycle the yeast biomass, by using it as nitrogen source to supplement molasses, was also developed.

4.
Microorganisms ; 6(4)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347699

RESUMO

Thermophilic proteins have evolved different strategies to maintain structure and function at high temperatures; they have large, hydrophobic cores, and feature increased electrostatic interactions, with disulfide bonds, salt-bridging, and surface charges. Oligomerization is also recognized as a mechanism for protein stabilization to confer a thermophilic adaptation. Mesophilic proteins are less thermostable than their thermophilic homologs, but oligomerization plays an important role in biological processes on a wide variety of mesophilic enzymes, including thermostabilization. The mesophilic yeast Candida rugosa contains a complex family of highly related lipase isoenzymes. Lip3 has been purified and characterized in two oligomeric states, monomer (mLip3) and dimer (dLip3), and crystallized in a dimeric conformation, providing a perfect model for studying the effects of homodimerization on mesophilic enzymes. We studied kinetics and stability at different pHs and temperatures, using the response surface methodology to compare both forms. At the kinetic level, homodimerization expanded Lip3 specificity (serving as a better catalyst on soluble substrates). Indeed, dimerization increased its thermostability by more than 15 °C (maximum temperature for dLip3 was out of the experimental range; >50 °C), and increased the pH stability by nearly one pH unit, demonstrating that oligomerization is a viable strategy for the stabilization of mesophilic enzymes.

5.
Microb Cell Fact ; 17(1): 137, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176892

RESUMO

BACKGROUND: The recycling of agro-industrial wastes is at present limited by the availability of efficient and low-cost enzyme cocktails. The use of these materials as culture media to produce the enzymes can contribute to the profitability of the recycling process and to the circular economy. The aim of this work is the construction of a recombinant yeast strain efficient to grow in mixed whey (residue of cheese making) and beet molasses (residue of sugar manufacture) as culture medium, and to produce heterologous α-galactosidase, an enzyme with varied industrial applications and wide market. RESULTS: The gene MEL1, encoding the α-galactosidase of Saccharomyces cerevisiae, was integrated (four copies) in the LAC4 locus of the Kluyveromyces lactis industrial strain GG799. The constructed recombinant strain produces high levels of extracellular α-galactosidase under the control of the LAC4 promoter, inducible by lactose and galactose, and the native MEL1 secretion signal peptide. K. lactis produces natively beta-galactosidase and invertase thus metabolizing the sugars of whey and molasses. A culture medium based on whey and molasses was statistically optimized, and then the cultures scaled-up at laboratory level, thus obtaining 19 U/mL of heterologous α-galactosidase with a productivity of 0.158 U/L h, which is the highest value reported hitherto from a cheap waste-based medium. CONCLUSIONS: A K. lactis recombinant strain was constructed and a sustainable culture medium, based on a mixture of cheese whey and beet molasses, was optimized for high productivity of S. cerevisiae α-galactosidase, thus contributing to the circular economy by producing a heterologous enzyme from two agro-industrial wastes.


Assuntos
Queijo/análise , Resíduos Industriais/análise , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Soro do Leite/química , alfa-Galactosidase/síntese química
6.
Sci Rep ; 7: 45535, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361909

RESUMO

Kluyveromyces lactis ß-galactosidase (Kl-ß-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-ß-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-ß-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-ß-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-ß-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-ß-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis.


Assuntos
Dissulfetos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mutagênese/genética , beta-Galactosidase/genética , Galactose/genética , Temperatura Alta , Kluyveromyces/enzimologia , Lactose/genética , Mutação/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...