Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
2.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872262

RESUMO

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/metabolismo , Florestas , Folhas de Planta/metabolismo , Hábitos , Carbono/metabolismo
4.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373919

RESUMO

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Solo , Solo/química , Argila , Florestas , Carbono
6.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050293

RESUMO

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Assuntos
Biodiversidade , Traqueófitas , Ecossistema , Plantas
7.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941205

RESUMO

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Assuntos
Biodiversidade , Florestas , Solo , Árvores
8.
Sci Data ; 9(1): 511, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987763

RESUMO

We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY's next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.


Assuntos
Biodiversidade , Plantas , Fenótipo , Folhas de Planta , Madeira
9.
Sci Adv ; 8(26): eabn1767, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776785

RESUMO

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101981

RESUMO

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/classificação , Planeta Terra , Árvores/crescimento & desenvolvimento
11.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
12.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712699

RESUMO

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Assuntos
Ecossistema , Madeira , Florestas , Filogenia , Clima Tropical
13.
Glob Chang Biol ; 25(11): 3609-3624, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310673

RESUMO

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.


Assuntos
Árvores , Clima Tropical , África , Ásia , Biomassa , Carbono , Florestas , América do Sul
14.
Sci Adv ; 5(3): eaau3114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854424

RESUMO

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.


Assuntos
Biodiversidade , Ecossistema , Florestas , Clima Tropical , Conservação dos Recursos Naturais , Geografia
15.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406962

RESUMO

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , Água
16.
Nat Ecol Evol ; 2(12): 1906-1917, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455437

RESUMO

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.


Assuntos
Características de História de Vida , Dispersão Vegetal , Plantas , Florestas , Pradaria
17.
Rev. biol. trop ; 66(1): 227-236, Jan.-Mar. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-897667

RESUMO

Resumen Los reportes sobre diversidad de plantas en los bosques tropicales suelen estar restringidos a árboles u otros grupos de plantas leñosas por encima de cierto diámetro del tallo. Sin embargo, otros estudios que incluyen todas las formas de vida sin restricciones de tamaño de los individuos, indican claramente que las plantas no leñosas son igual de importantes. En este estudio se reporta la Riqueza total de especies de plantas vasculares (RTE) en una parcela de una hectárea en un bosque andino del noroccidente de Colombia (6º12'48"N & 75º29'32"O); adicionalmente evaluamos la contribución de los diferentes hábitos de crecimiento a la RTE y el efecto del tamaño de las plantas. Se censaron todos los individuos con diámetro del tronco (D) ≥ 5 cm en 1 ha, y todas las plantas vasculares de todos los tamaños, incluyendo epífitas, en una muestra de 0.25 hectáreas. Se registró un total de 14 545 individuos distribuidos en 318 especies, 72 familias (considerando Pteridophyta como un solo grupo) y 171 géneros. El 99.7 % de las especies son menores de 10 cm de (D) y el 94.4 % son menores a 2.5 cm de (D). Las especies no arbóreas (hierbas terrestres, epífitas y escandentes) representan el 54.3% del total de especies registradas en la parcela, lo que indica que son un componente clave de la estructura, composición y riqueza de este bosque montano neotropical. Estos resultados confirman reportes similares para otros bosques tropicales. Concluimos que para conocer con más detalle la diversidad de florística de un sitio es recomendable: 1) ampliar el rango de tamaño de las plantas considerado comúnmente en los inventarios florísticos y 2) incluir las especies no leñosas; esta información es crucial para tomar mejores decisiones en los esfuerzos de conservación a escala local y global.


Abstract Studies of plant diversity in tropical forests are usually restricted to trees or other groups of woody plants above a certain stem diameter. However, surveys that include all forms of live plants with no restrictions on their sizes, clearly indicate that non-woody plants are equally important. In this study, we reported the total species richness of vascular plants species (TSR) in one hectare plot in an Andean forest in Northwestern Colombia (6º12'48"N & 75º29 32"W). We evaluated the relative contribution of the different growth habits and the effect of the plant size, to TSR. We measured all individuals with diameter (D) ≥ 5 cm in the hectare and all the vascular plants of all sizes, including epiphytes, in a subsample of 0.25 ha. A total of 14 545 individuals distributed in 318 species, 72 families (considering Pteridophyta as one group) and 171 genera were registered. Most of the species showed a (D) < 10 cm (99.7 %) and < 2.5 cm (94.4 %). The no-arboreal species (ground herbs, epiphytes and vines) represented 54.3 % of the total species reported in the plot, indicating that they are important in the structure, composition and species richness of this montane forest. Our results coincide with similar studies in other tropical forests. We concluded that to get a more detailed knowledge of the floristic diversity of a site, it is advisable to: 1) amplify the size range of the plants generally considered in the floristic inventories and 2) to include non-woody species. This information is crucial for making better decisions in local and global conservation efforts. Rev. Biol. Trop. 66(1): 227-236. Epub 2018 March 01.

18.
Entramado ; 13(1)jun. 2017.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1534385

RESUMO

Los bosques tropicales son considerados como un importante depósito de carbono, cuya permanencia en el ecosistema depende en gran medida de que no se manifiesten fenómenos naturales y antrogénicos; por lo que se hace necesario emprender estrategias para su conservación y manejo. Se cuantificó el carbono almacenado en la biomasa aérea en bosques de 12, 30 y 40 años, ubicados en el Jardín Botánico del Pacífico, Bahía Solano Chocó Colombia. Para ello, se les midió diámetro y altura total a todos los individuos presentes con DAP > 10 cm, en nueve Parcelas Temporales de Muestreo de 0,1 ha. Se estimó la biomasa aérea a través de ecuaciones alométricas, el carbono almacenado en la biomasa aérea con una fracción de carbono de 0,5, la tasa de fijación de carbono y dióxido de carbono equivalentes (CO2 eq) mediante el factor de 3,67. Se encontró un carbono almacenado promedio de 48,2 t ha-1, una biomasa aérea de 96,3 t ha-1, una tasa de fijación de carbono promedio de 1,9 t ha-1 año-1. El contenido de carbono de los bosques estudiados aumenta conforme crece la edad de estos, mientras que con la tasa de fijación de carbono sucede todo lo contrario.


Tropical forests are considered as an important carbon deposit, whose permanence in the ecosystem depends to a large extent on the fact that natural and anthrogenic phenomena do not occur; So it is necessary to undertake strategies for its conservation and management. The carbon stored in the aerial biomass was quantified in forests of 12, 30 and 40 years, located in the Botanical Garden of the Pacific, Bahía Solano Chocó-Colombia. For that, total diameter and height were measured in all individuals present with DBH > 10 cm, in nine Temporary Sampling Plots of 0.1 ha. Aerial biomass was estimated through allometric equations, carbon stored in aerial biomass with a carbon fraction of 0.5, carbon-binding rate and carbon dioxide equivalent (CO2 eq) by the factor of 3.67. An average stored carbon of 48.2 t ha-1, an aerial biomass of 96.3 t ha-1, an average carbon fixation rate of 1.9 t ha-1 year -l was found. The carbon content of the studied forests increases as the age of these forests increases, while with the rate of carbon fixation the opposite happens.


Florestas tropicais são considerados como um importante reservatório de carbono, cuja presença no ecossistema depende em grande parte que não natural e antrogénicos fenómenos manifesto; por isso é necessário para empreender estratégias para a sua conservação e gestão. O carbono armazenado na biomassa em florestas l2, 30 e 40, localizado no Jardim Botânico Pacífico Baía Solano Colômbia Chocó foi quantificada. Para este efeito, nós medimos o diâmetro e a altura total de todos os indivíduos presentes com DAP > l0 cm em nove lotes de amostragem temporária 0,l ha. biomassa superficial foi estimada por equações alométrico, carbono armazenado na biomassa acima do solo com uma fracção de carbono de 0,5, a taxa de fixação de carbono e emissões por factor de 3,67 equivalente de carbono (CO2 eq) . um estoques médios de carbono encontrados 48,2 t ha-', uma biomassa de 96,3 t ha-', a taxa de fixação de carbono médio de l,9 t ha-' ano-'. O teor de carbono das florestas estudadas aumenta com a idade destes crescendo, enquanto a taxa de fixação de carbono oposto acontece.

19.
PLoS One ; 12(3): e0171072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301482

RESUMO

Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.


Assuntos
Biomassa , Florestas , Temperatura , Clima Tropical , Água , Modelos Teóricos , América do Sul
20.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974517

RESUMO

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Assuntos
Florestas , Filogenia , Árvores/classificação , Clima Tropical , Evolução Biológica , Ecologia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...