Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(45): 50739-50750, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321841

RESUMO

The design of an active, effective, and economically viable catalyst for CO2 conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity. Here, we show that Ni/La-doped CeO2 catalysts─with the "right" Ni and La proportions─have an unprecedented catalytic performance per unit mass of catalyst for the rWGS reaction as the first step toward CO2 valorization. Correlations between physicochemical properties and catalytic activity, obtained using a combination of different techniques such as X-ray and neutron powder diffraction, Raman spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, electron microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the nature of the active sites. This finding offers a fundamental basis for developing economical catalysts that can be effectively used for CO2 reduction with hydrogen. A catalyst based on Ni0.07/(Ce0.9La0.1Ox)0.93 shows a CO production of 58 × 10-5 molCO·gcat-1·s-1 (700 °C, H2/CO2 = 2; selectivity to CO > 99.5), being stable for 100 h under continuous reaction.

3.
Inorg Chem ; 61(14): 5502-5511, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344352

RESUMO

All-inorganic lead halide perovskites like CsPbBr3, CsPbI3, or RbPbI3 are good replacements for the classical hybrid organic-inorganic perovskites like CH3NH3PbI3, susceptible to fast degradation in the presence of humid air. They also exhibit outstanding light absorption properties suitable for solar energy applications. Here, we describe the synthesis of RbPbI3 by mechanochemical procedures with green credentials, avoiding toxic or expensive organic solvents; this specimen exhibits excellent crystallinity. We report neutron powder diffraction data, essential to revisit some subtle structural features around room temperature (200-400 K). In all these regimes, the orthorhombic Pnma crystal structure is characterized by the presence along the b direction of the crystal of double rows of edge-sharing PbI6 octahedra. The lone electron pairs of Pb2+ ions have a strong stereochemical effect on the PbI6 octahedral distortion. The relative covalency of Rb-I versus Pb-I bonds shows that the Pb-I-related motions are more rigid than Rb-I-related vibrations, as seen in the Debye temperatures from the evolution of the anisotropic displacements. The optical gap, measured by diffuse reflectance UV-vis spectroscopy, is ∼2.51 eV and agrees well with ab initio calculations. The thermoelectric Seebeck coefficient is 3 orders of magnitude larger than that of other halide perovskites, with a value of ∼117,000 µV·K-1 at 460 K.

4.
Sci Rep ; 10(1): 11228, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641694

RESUMO

Among the hybrid organic-inorganic perovskites MAPbX3 (MA: methyl-ammonium CH3-NH3+, X = halogen), the triiodide specimen (MAPbI3) is still the material of choice for solar energy applications. Although it is able to absorb light above its 1.6 eV bandgap, its poor stability in humid air atmosphere has been a major drawback for its use in solar cells. However, we discovered that this perovskite can be prepared by ball milling in a straightforward way, yielding specimens with a superior stability. This fact allowed us to take atomic-resolution STEM images for the first time, with sufficient quality to unveil microscopic aspects of this material. We demonstrated full Iodine content, which might be related to the enhanced stability, in a more compact PbI6 framework with reduced unit-cell volume. A structural investigation from neutron powder diffraction (NPD) data of an undeuterated specimen was essential to determine the configuration of the organic MA unit in the 100-298 K temperature range. A phase transition is identified, from the tetragonal structure observed at RT (space group I4/mcm) to an orthorhombic (space group Pnma) phase where the methyl-ammonium organic units are fully localized. Our NPD data reveal that the MA changes are gradual and start before reaching the phase transition. Optoelectronic measurements yield a photocurrent peak at an illumination wavelength of 820 nm, which is redshifted by 30 nm with respect to previously reported measurements on MAPbI3 perovskites synthesized by crystallization from organic solvents.

5.
Front Chem ; 7: 104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931293

RESUMO

There is great economic incentive in developing efficient catalysts to produce hydrogen or syngas by catalytic partial oxidation of methane (CPOM) since this is a much less energy-intensive reaction than the highly endothermic methane steam reforming reaction, which is the prominent reaction in industry. Herein, we report the catalytic behavior of nickel-based catalysts supported on different oxide substrates (Al2O3, CeO2, La2O3, MgO, and ZrO2) synthesized via wet impregnation and solid-state reaction. Furthermore, the impact of Rh doping was investigated. The catalysts have been characterized by X-ray diffraction, N2 adsorptiondesorption at -196°C, temperature-programmed reduction, X-ray photoelectron spectroscopy, O2-pulse chemisorption, transmission electron microscopy, and Raman spectroscopy. Supported Ni catalysts were found to be active for CPOM but can suffer from fast deactivation caused by the formation of carbon deposits as well as via the sintering of Ni nanoparticles (NPs). It has been found that the presence of Rh favors nickel reduction, which leads to an increase in the methane conversion and yield. For both synthesis methods, the catalysts supported on alumina and ceria show the best performance. This could be explained by the higher surface area of the Ni NPs on the alumina surface and presence of oxygen vacancies in the CeO2 lattice, which favor the proportion of oxygen adsorbed on defect sites. The catalysts supported on MgO suffer quick deactivation due to formation of a NiO/MgO solid solution, which is not reducible under the reaction conditions. The low level of carbon formation over the catalysts supported on La2O3 is ascribed to the very high dispersion of the nickel NPs and to the formation of lanthanum oxycarbonate, through which carbon deposits are gasified. The catalytic behavior for catalysts with ZrO2 as support depends on the synthesis method; however, in both cases, the catalysts undergo deactivation by carbon deposits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...