Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cancer Control ; 31: 10732748241238047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494880

RESUMO

BACKGROUND: Alterations in PI3K function are directly related to cancer, making PI3K inhibitors suitable options for anticancer therapies. Information on therapy using different types of PI3K inhibitors is available in literature, providing indications of trends in developing new therapies. Although some studies on PI3K inhibitors for cancer treatment provide clinical evidence, they do not allow a careful search for potential PI3K inhibitors conducted by development indicators. Here, we performed a foresight study of clinical trials involving PI3K inhibitors from the past 11 years using indicators of clinical evolution to identify technological trends and provide data for supporting recommendations for new study designs. METHODS: A comprehensive foresight study was designed based on documents from clinical trials on PI3K inhibitors to perform a systematic and comparative analysis, in order to identify technological trends on new cancer therapies. RESULTS: Our results demonstrate that total number of clinical trials has decreased over the years and, currently, there is a clear prevalence of studies using isoform-specific inhibitors in combined interventions. Clinical trials in Phases I and II were the most frequently found in the database, whereas Phase III trials correspond to 7% of studies. The measurement of clinical trials progression using indicators (drugs in Phase III profile, top-10 drugs, and top-10 combined drugs) demonstrated that the 3 new medicines BKM120, IBI-376, and PF-05212384 have a high potential to provide more efficient cancer treatment in combined interventions. These data also include the groups of targets for each drug, providing a useful and reliable source for design new combinations to overcome the resistance and the poor tolerability observed in some PI3K therapies. CONCLUSIONS: The establishment of development indicators based on clinical trials for cancer treatment was useful to highlight the clinical investment in 3 new PI3K drugs and the advantages of combine therapy using FDA-approved drugs.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Bases de Dados Factuais , Neoplasias/tratamento farmacológico , Projetos de Pesquisa
2.
Front Cell Infect Microbiol ; 13: 1175409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287468

RESUMO

The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns. The conventional treatment is limited to the acute phase of illness, without effects in latent parasites; consequently, a cure is not available yet. Furthermore, considerable toxic effects and long-term therapy contribute to high treatment abandonment rates. The investigation of exclusive parasite pathways would provide new drug targets for more effective therapies, eliminating or reducing the side effects of conventional pharmacological approaches. Protein kinases (PKs) have emerged as promising targets for developing specific inhibitors with high selectivity and efficiency against diseases. Studies in T. gondii have indicated the presence of exclusive PKs without homologs in human cells, which could become important targets for developing new drugs. Knockout of specific kinases linked to energy metabolism have shown to impair the parasite development, reinforcing the essentiality of these enzymes in parasite metabolism. In addition, the specificities found in the PKs that regulate the energy metabolism in this parasite could bring new perspectives for safer and more efficient therapies for treating toxoplasmosis. Therefore, this review provides an overview of the limitations for reaching an efficient treatment and explores the role of PKs in regulating carbon metabolism in Toxoplasma, discussing their potential as targets for more applied and efficient pharmacological approaches.


Assuntos
Transtornos Mentais , Toxoplasma , Toxoplasmose , Humanos , Recém-Nascido , Proteínas Quinases/metabolismo , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Toxoplasma/metabolismo
3.
Microorganisms ; 11(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375060

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world's population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

4.
Microorganisms, v. 11, n. 6, 1558, jun. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4955

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world’s population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

5.
Mol Cell Proteomics ; 21(3): 100208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091090

RESUMO

In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.


Assuntos
Proteômica , Trypanosoma cruzi , Transporte Ativo do Núcleo Celular , RNA , Splicing de RNA , Transporte de RNA
6.
Pathogens ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36678380

RESUMO

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.

7.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408226

RESUMO

Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Fibroblastos/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvatos/metabolismo , Toxoplasma/efeitos dos fármacos , Ácido Dicloroacético/química , Fibroblastos/parasitologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Oxirredutases , Toxoplasmose/tratamento farmacológico
8.
RNA Biol ; 16(1): 133-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593255

RESUMO

Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Interações Hospedeiro-Parasita/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Trypanosoma brucei brucei/fisiologia , Animais , Bovinos , Células Cultivadas , Complexo Multienzimático de Ribonucleases do Exossomo/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , RNA Ribossômico/isolamento & purificação , Relação Estrutura-Atividade , Tripanossomíase Bovina/genética , Tripanossomíase Bovina/parasitologia
10.
Mem Inst Oswaldo Cruz ; 113(6): e170531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924141

RESUMO

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Assuntos
Grânulos Citoplasmáticos/genética , Proteínas de Protozoários/genética , RNA de Protozoário/genética , Ribonucleoproteínas/genética , Trypanosoma cruzi/citologia , Western Blotting , Grânulos Citoplasmáticos/fisiologia , Imunofluorescência , Membrana Nuclear/fisiologia , Proteínas de Protozoários/fisiologia , RNA de Protozoário/fisiologia , Ribonucleoproteínas/fisiologia , Trypanosoma cruzi/genética
11.
Parasit Vectors ; 11(1): 83, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409544

RESUMO

BACKGROUND: Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. RESULTS: We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. CONCLUSIONS: Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite's fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.


Assuntos
Diferenciação Celular , Organelas/ultraestrutura , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Microscopia
12.
Parasit Vectors ; 11(1): 62, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370868

RESUMO

Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Toxoplasma/metabolismo , Transporte Ativo do Núcleo Celular , Biologia Molecular/métodos , Parasitologia/métodos , Toxoplasma/genética
13.
Mem. Inst. Oswaldo Cruz ; 113(6): e170531, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-955110

RESUMO

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Assuntos
Humanos , RNA/sangue , RNA Mensageiro/análise , Metaciclina/uso terapêutico , RNA Nuclear Pequeno
14.
Apoptosis ; 22(12): 1564-1577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058102

RESUMO

Some therapeutics for parasitic, cardiac and neurological diseases activate apoptosis. Therefore, the study of apoptotic proteins in pathogenic organisms is relevant. However, the molecular mechanism of apoptosis in unicellular organisms remain elusive, despite morphological evidence of its occurrence. In Trypanosoma cruzi, the causative agent of Chagas disease, metacaspase 3 (TcMCA3), seems to have a key role in parasite apoptosis. Accordingly, this work provides data concerning TcMCA3 regulation through its interaction with procaspase-activating compound 1 (PAC-1), a procaspase 3 activator. Indeed, PAC-1 reduced T. cruzi epimastigote viability with an IC50 of 14.12 µM and induced loss of mitochondrial potential and exposure of phosphatidylserine, features of the apoptotic process. Notwithstanding, those PAC-1-inducible effects were not conserved in metacyclic trypomastigotes. Moreover, PAC-1 reduced the viability of mammalian cells with a greater IC50 (25.70 µM) compared to T. cruzi epimastigotes, indicating distinct modes of binding between caspases and metacaspases. To shed light on the selectivity of metacaspases and caspases, we determined the structural features related to the PAC-1 binding sites in both types of proteins. These data are important for improving the understanding of the apoptosis pathway in T. cruzi so that TcMCA3 could be better targeted with future pharmaceuticals.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Caspases , Hidrazonas/farmacologia , Piperazinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Proteínas Reguladoras de Apoptose/química , Caspases/química , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hidrazonas/metabolismo , Hidrazonas/toxicidade , Concentração Inibidora 50 , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fosfatidilserinas/metabolismo , Piperazinas/metabolismo , Piperazinas/toxicidade , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
15.
Int J Biol Macromol ; 98: 793-801, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28212935

RESUMO

The RNA helicase DEAD-box protein Sub2 (yeast)/UAP56 (mammals) is conserved across eukaryotes and is essential for mRNA export in trypanosomes. Despite the high conservation of Sub2 in lower eukaryotes such as Trypanosoma cruzi, the low conservation of other mRNA export factors raises questions regarding whether the mode of action of TcSub2 is similar to that of orthologs from other eukaryotes. Mutation of the conserved K87 residue of TcSub2 abolishes ATPase activity, showing that its ATPase domain is functional. However, the Vmax of TcSub2 was much higher than the Vmax described for the human protein UAP56, which suggests that the TcSub2 enzyme hydrolyzes ATP faster than its human homolog. Furthermore, we demonstrate that RNA association is less important to the activity of TcSub2 compared to UAP56. Our results show differences in activity of this protein, even though the structure of TcSub2 is very similar to UAP56. Functional complementation assays indicate that these differences may be common to other trypanosomatids. Distinct features of RNA influence and ATPase efficiency between UAP56 and TcSub2 may reflect distinct structures for functional sites of TcSub2. For this reason, ligand-based or structure-based methodologies can be applied to investigate the potential of TcSub2 as a target for new drugs.


Assuntos
Adenosina Trifosfatases/química , RNA Helicases DEAD-box/química , RNA Mensageiro/genética , Trypanosoma cruzi/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , Humanos , Mutação , Conformação Proteica , RNA Mensageiro/química , Relação Estrutura-Atividade
16.
PLoS One ; 9(10): e109521, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313564

RESUMO

Gene expression in trypanosomes is controlled mostly by post-transcriptional pathways. Little is known about the components of mRNA nucleocytoplasmic export routes in these parasites. Comparative genomics has shown that the mRNA transport pathway is the least conserved pathway among eukaryotes. Nonetheless, we identified a RNA helicase (Hel45) that is conserved across eukaryotes and similar to shuttling proteins involved in mRNA export. We used in silico analysis to predict the structure of Trypanosoma cruzi Hel45, including the N-terminal domain and the C-terminal domain, and our findings suggest that this RNA helicase can form complexes with mRNA. Hel45 was present in both nucleus and cytoplasm. Electron microscopy showed that Hel45 is clustered close to the cytoplasmic side of nuclear pore complexes, and is also present in the nucleus where it is associated with peripheral compact chromatin. Deletion of a predicted Nuclear Export Signal motif led to the accumulation of Hel45ΔNES in the nucleus, indicating that Hel45 shuttles between the nucleus and the cytoplasm. This transport was dependent on active transcription but did not depend on the exportin Crm1. Knockdown of Mex67 in T. brucei caused the nuclear accumulation of the T. brucei ortholog of Hel45. Indeed, Hel45 is present in mRNA ribonucleoprotein complexes that are not associated with polysomes. It is still necessary to confirm the precise function of Hel45. However, this RNA helicase is associated with mRNA metabolism and its nucleocytoplasmic shuttling is dependent on an mRNA export route involving Mex67 receptor.


Assuntos
Proteínas de Protozoários/metabolismo , RNA Helicases/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Cultura Axênica , Domínio Catalítico , Núcleo Celular/enzimologia , Sequência Conservada , Citoplasma/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Poro Nuclear/enzimologia , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA Helicases/química , RNA Helicases/genética , Transporte de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
17.
PLoS One ; 8(6): e67441, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840703

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease, an illness that affects about 10 million people, mostly in South America, for which there is no effective treatment or vaccine. In this context, transgenic parasites expressing reporter genes are interesting tools for investigating parasite biology and host-parasite interactions, with a view to developing new strategies for disease prevention and treatment. We describe here the construction of a stably transfected fluorescent T. cruzi clone in which the GFP gene is integrated into the chromosome carrying the ribosomal cistron in T. cruzi Dm28c. This fluorescent T. cruzi produces detectable amounts of GFP only at replicative stages (epimastigote and amastigote), consistent with the larger amounts of GFP mRNA detected in these forms than in the non replicative trypomastigote stages. The fluorescence signal was also strongly correlated with the total number of parasites in T. cruzi cultures, providing a simple and rapid means of determining the growth inhibitory dose of anti-T.cruzi drugs in epimastigotes, by fluorometric microplate screening, and in amastigotes, by the flow cytometric quantification of T. cruzi-infected Vero cells. This fluorescent T. cruzi clone is, thus, an interesting tool for unbiased detection of the proliferating stages of the parasite, with multiple applications in the genetic analysis of T. cruzi, including analyses of host-parasite interactions, gene expression regulation and drug development.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Trypanosoma cruzi/fisiologia , Animais , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo , Fluorometria , Genes Reporter , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Parasita , Concentração Inibidora 50 , Viabilidade Microbiana , Nitroimidazóis/farmacologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Organismos Geneticamente Modificados/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
18.
Adv Parasitol ; 75: 285-305, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21820561

RESUMO

Trypanosoma cruzi alternates between different morphological and functional types during its life cycle. Since the discovery of this parasite at the beginning of the twentieth century, efforts have been made to determine the basis of its pathogenesis in the course of Chagas disease and its biochemical constituents. There has also been work to develop tools and strategies for prophylaxis of the important disease caused by these parasites which affects millions of people in Latin America. The identification of axenic conditions allowing T. cruzi growth and differentiation has led to the identification and characterization of stage-specific antigens as well as a better characterization of the biological properties and biochemical particularities of each individual developmental stage. The recent availability of genomic data should pave the way to new progress in our knowledge of the biology and pathogenesis of T. cruzi. This review addresses the differentiation and major stage-specific antigens of T. cruzi and attempts to describe the complexity of the parasite and of the disease it causes.


Assuntos
Antígenos de Protozoários/imunologia , Estágios do Ciclo de Vida , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Adesão Celular , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Cisteína Proteases/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/imunologia , Mamíferos , Neuraminidase/imunologia , Fosfoproteínas/imunologia , Proteínas de Protozoários/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
19.
PLoS One ; 6(6): e20730, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687672

RESUMO

In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2) is a component of mRNA transcription/export pathway in trypanosomes.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Transcrição Gênica , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Clonagem Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia
20.
Blood Purif ; 25(5-6): 411-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17914260

RESUMO

BACKGROUND/AIMS: Chronic kidney disease (CKD) and periodontitis (PD) are serious public-health concerns. Vitamin D is a fat-soluble steroid hormone that interacts with its nuclear receptor (VDR) to regulate a variety of biological processes, such as bone metabolism, immune response modulation and transcription of several genes involved in CKD and PD disease mechanisms. The aim of this work was to investigate the association between polymorphisms in the VDR gene and end-stage renal disease (ESRD) and PD. METHODS: 222 subjects with and without ESRD (in hemodialysis) were divided into groups with and without PD. Polymorphisms TaqI and BsmI in the VDR gene were analyzed by PCR restriction fragment length polymorphism. The significance of differences in allele, genotype and haplotype frequencies between groups was assessed by the chi2 test (p value <0.05) and odds ratio (OR). RESULTS: Allele G was associated with protection against ESRD: groups without versus with ESRD (GG) x (GA+AA): OR = 2.5, 95% CI = 1.4-4.6, p = 0.00; (G x A): OR = 1.5, 95% CI = 1.0-2.3, p = 0.02; (TG + CG) x (TA + CA): OR = 1.5, 95% CI = 1.0-2.3, p = 0.02. No association was observed between the study polymorphisms and susceptibility to or protection against PD. CONCLUSION: Allele G of the VDR BsmI polymorphism was associated with protection against ESRD.


Assuntos
Predisposição Genética para Doença , Falência Renal Crônica/genética , Periodontite/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Desoxirribonucleases de Sítio Específico do Tipo II , Frequência do Gene , Genótipo , Haplótipos , Humanos , Falência Renal Crônica/etiologia , Pessoa de Meia-Idade , Periodontite/etiologia , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...